

Integrating with GoldMine
API Specifications and Examples

GoldMine Versions 5 through 8

Copyright © 2007 FrontRange Solutions Inc. All Rights Reserved.

This software includes software developed by the Apache Software Foundation
(http:// www.apache.org/).

The Sentry Spelling-Checker Engine Copyright © 1999 Wintertree Software Inc.

Use of this software and its related user documentation IS subject to the terms and
conditions of the applicable End-User License Agreement (EULA), a copy of which is
found in the user documentation. You must agree to the terms and conditions of the
EULA in order to use this software. If you do not agree to the terms and conditions
of the EULA, promptly return the unused software IN ITS UNOPENED CD
PACKAGE to the place from which you obtained it for a refund.

WARNING: The software described in this manual and its related user documentation
are protected by copyright law. In no event, shall any part of the related user
documentation be copied, reproduced, distributed, transmitted, stored in a retrieval
system, or translated into any language, without the express written permission of
FrontRange Solutions Inc.

Contact FrontRange Solutions Inc. at our Web site: www.frontrange.com

http://www.frontrange.com/

Table of Contents
About this Manual ___ 17

Style Conventions used in this Manual _______________________________________ 17
Print Conventions__ 17
General Conventions ___ 18

Mouse Conventions __ 19
Methods of Integrating with GoldMine __ 22

Integrating via Dynamic Data Exchange ______________________________________ 22
Integrating via GMXS32.DLL ___ 22
Integrating via the GoldMine XML API (GMXMLAPI.DLL) _________________________ 22
Interacting with GoldMine via the GoldMine COM Server _________________________ 23
Integrating via GoldMine Plug-ins ___ 23
Integrating via a Database Engine___ 23
Comparing Integration Methods___ 23
Resources and Support ___ 24

Open Developer Community ___ 24
Technology Partner Program ___ 25
Integration Tools___ 25

Using DDE in GoldMine ___ 29
Merging Data into a Document ___ 29
Updating Database Information ___ 29
Querying for Data__ 29
Identifying Telephone Numbers Automatically__________________________________ 30
Linking Contact Records to an Accounting Application ___________________________ 30
Inserting Incoming E-mail__ 30
Linking GoldMine to MS Word for Windows____________________________________ 30
Entering Application, Topic, and Item Names __________________________________ 30

Establishing a DDE Conversation ___ 31
Working with DDE Functions ___ 32

Accessing Data Files ___ 33
Adding an Empty Record __ 33
Parameters___ 33
Return Value ___ 33
Closing an Opened File ___ 34
Deleting the Current Record__ 35

Creating a Subset of Records __ 35
Checking for an Xbase or SQL Table ______________________________________ 37
Moving to a Specified Record __ 37
Opening a Data File __ 40
Limiting GoldMine Search Range ___ 41
Reading a Field Value __ 42
Checking the Current Record Number or Record ID ___________________________ 42
Changing a Field Value ___ 43
Performing a Sequential Search __ 44
Unlocking a Record __ 46

Accessing Contact Records__ 46
Linking GoldMine Fields with an External Application __________________________ 46

Accessing Specialized DDE Functions _______________________________________ 51
Retrieving Login Credentials for Use with the GMXS32.DLL_____________________ 51
Retrieving the RecID of the Current Opportunity ______________________________ 52
Completing a Calendar Activity ___ 52
Displaying the Contact Record of an Incoming Caller __________________________ 54
Running a Counter ___ 55
Returning GoldMine Record Data ___ 56
Processing a Web Import Instruction File ___________________________________ 59
Reading an Xbase Expression Without Opening a File _________________________ 59
Adding Merge Fields to a Form ___ 60
Deleting Fields from a Form__ 62
Closing a Form Profile __ 62
Creating an Xbase File with Registered Fields _______________________________ 62
Returning a Field Name for an Expression __________________________________ 63
Returning a Value for Unattached Fields ____________________________________ 64
Counting the Number of Exported Records __________________________________ 64
Creating a History Record ___ 64
Creating or Updating a Document Link _____________________________________ 66
Displaying a Message Dialog Box ___ 67
Adding a Merge Form __ 69
Creating a Group __ 71
Adding a Group Member __ 72
Creating a Macro __ 73
Creating and Sending a Pager Message ____________________________________ 75
Displaying a Message in the GoldMine Status Bar ____________________________ 76
Converting TLog Timestamps __ 76

DDE Macros__ 77
DDE Macros for Merge Forms __ 84
DDE Macros for the GoldMine License _____________________________________ 87

Passing Multiple Parameters to a Function ____________________________________ 90
Comparing Low Level/DDE Methodology to Business Logic Methodology ____________ 90

Loading GMXS32.DLL and Logging In ___ 91
Setting the SQL Database Login Name and Password (GoldMine 6.7 or lower only) ____ 91
Loading an API Session (GoldMine 7.0 or higher)_______________________________ 92
Loading a BDE Session (GoldMine 6.7 or lower)________________________________ 93
Logging in a User__ 95
Closing an API Session (GoldMine 7.0 or higher) _______________________________ 95
Closing a BDE Session (GoldMine 6.7 or lower) ________________________________ 96

Logging in Multiple Users through the API_______________________________________ 97
Logging In ___ 97
Logging Out __ 98
Switching Between Login Sessions __ 98
Special Consideration for Multi-Threaded Applications ___________________________ 98

Working with Business Logic Functions using the Name/Value Pair Method ____________ 99
Creating an NV Container ___ 99
Creating an NV Container with Copied Values ________________________________ 100
Copying Values between NV Containers_____________________________________ 100
Deleting an NV Container __ 101
Reading Values from an NV Container ______________________________________ 101
Storing NV Pairs in a Container __ 102
Searching for an NV Pair ___ 102
Removing one NV Pair___ 103
Removing all NV Pairs from a Container _____________________________________ 103
Totaling NV Pairs in a Container ___ 104
Finding an NV Name __ 104
Finding an NV Value __ 105
Setting NV Pairs__ 105
Executing Business Logic Methods ___ 106

Working with Multi-Value Name/Value Pairs ____________________________________ 106
Determining the Type of a Name/Value Pair __________________________________ 106
Determining the Position of an NV Container in an NV Hierarchy __________________ 107

Getting the Number of Values in a Multi-Value Pair ____________________________ 108
Retrieving Containers from an NV Pair ______________________________________ 109
Retrieving the Values in a Multi-Value Pair ___________________________________ 110
Deleting Values from a Multi-Value Pair _____________________________________ 110
Assigning a Container to a Parent __ 110
Creating an Empty Child Container Within the Parent___________________________ 111
Appending String Values to a Multi-Value Pair ________________________________ 112

Low-level Data Access & Manipulation __ 113
Reading Security and Rights for a DLL User __________________________________ 113
Returning GoldMine Licensing Information ___________________________________ 115
Returning Calendar Data ___ 116
Retrieving Data with DataStream___ 116

Advantages of Using DataStream __ 116
DataStream Record Selection ___ 117
GMW_DS_Range __ 117
GMW_DS_Query ___ 119
GMW_DS_Fetch ___ 119
GMW_DS_Close ___ 121

Accessing Low-Level Data Using Work Areas_________________________________ 121
Opening a Data File ___ 123
Closing a Data File__ 123
Checking for an SQL Table ___ 124
Adding a Record ___ 124
Deleting the Current Record __ 125
Querying for a Field Value __ 125
Checking the Current Record Number or Record ID __________________________ 126
Unlocking a Record ___ 127
Creating a Subset of Records ___ 127
Limiting Search Scope ___ 128
Performing a Sequential Search ___ 128
Moving to the First Record Match __ 129
Setting the Current Index Tag ___ 130
Positioning the Record Pointer___ 130
Moving to a Specified Record ___ 131
Moving to the First Record __ 131
Moving to the Previous or Following Record ________________________________ 132
Moving to the Last Record __ 132

Seeking a Record___ 133
Reading a Field Value ___ 134
Replacing a Field Value __ 134

Updating Sync Logs with GMXS32.DLL _____________________________________ 135
Updating the Sync Log File ___ 135
Importing a Prepared TLog Import File ____________________________________ 136
Getting a New Record ID ___ 137
Converting the Sync Stamp ___ 138

Executing Your XML Document__ 140
Creating Your XML Document ___ 140

Loading the API (GoldMine 7.0 or higher) ____________________________________ 140
Loading BDE (GoldMine 6.7) __ 142
Logging in Subsequent Users ___ 143
Logging Out ___ 144
Unloading the API (GoldMine 7.0 or higher) __________________________________ 144
Unloading BDE (GoldMine 6.7) __ 145
Accessing Data with Business Logic Functions________________________________ 145

Accessing Nested Nodes of Data___ 145
Business Logic Function Return Values____________________________________ 146

Accessing Low-level Data Manipulation Functionality ___________________________ 146
Retrieving Data with DataStream___ 146

Advantages of Using DataStream __ 147
DataStream Record Selection ___ 147
DS_Range __ 148
DS_Query___ 149
DS_Fetch ___ 149
DS_Close ___ 152

Accessing Low-Level Data Using Work Areas_________________________________ 153
Opening a Data File ___ 154
Closing a Data File__ 155
Checking for an SQL Table ___ 156
Adding a Record__ 156
Deleting the Current Record___ 157
Reading a Field Value ___ 157
Checking the Current Record Number or Record ID __________________________ 158
Changing a Field Value __ 159
Unlocking a Record ___ 159

Creating a Subset of Records ___ 160
Limiting Search Scope ___ 161
Performing a Sequential Search ___ 161
Moving to the First Record Match __ 162
Setting the Current Index Tag ___ 163
Positioning the Record Pointer___ 163
Moving to a Specified Record ___ 164
Moving to the First Record __ 166
Moving to the Previous or Following Record ________________________________ 166
Moving to the Last Record __ 167
Seeking a Record___ 168
Reading a Field Value ___ 168
Replacing a Field Value __ 169
Returning Calendar Data ___ 170

Updating Sync Logs___ 171
Updating the Sync Log File ___ 171
Importing a Prepared TLog Import File ____________________________________ 172
Getting a New Record ID ___ 173
Converting the Sync Stamp ___ 173

Using MSXML to Handle GoldMine API XML ___________________________________ 174
Getting Started___ 174
Defining the Root Element __ 174
Setting Attributes ___ 175

Referencing an Attribute ___ 175
Creating Child Elements ___ 176
Executing the XML Document ___ 176
Reading the Results___ 177

Reading the Code Attribute ___ 177
Reading the Returned Data ___ 178

Getting Started___ 180
Executing Commands ___ 180
Logging In to GoldMine __ 181

GoldMine.UI Class __ 181
Accessing Data Files __ 181

Adding an Empty Record ___ 182
Parameters__ 182

Return Value __ 182
Closing an Opened File __ 182
Deleting the Current Record___ 183
Creating a Subset of Records ___ 183
Checking for an Xbase or SQL Table______________________________________ 184
Moving to a Specified Record ___ 184
Opening a Data File ___ 186
Limiting GoldMine Search Range___ 187
Reading a Field Value ___ 188
Checking the Current Record Number or Record ID __________________________ 189
Changing a Field Value __ 189
Performing a Sequential Search ___ 191
Unlocking a Record ___ 191

Accessing Contact Records___ 192
Linking GoldMine Fields with an External Application _________________________ 192

Accessing Specialized GoldMine.UI Functions ________________________________ 197
Retrieving a List of Active Plug-Ins (GoldMine 7.0 or higher)____________________ 197
Running a Plug-In (GoldMine 7.0 or higher)_________________________________ 198
Retrieving Login Credentials for Use with the GMXS32.DLL ____________________ 198
Retrieving the RecID of the Current Opportunity _____________________________ 199
Completing a Calendar Activity __ 199
Displaying Edit Windows for Calendar and History Items ______________________ 200
Displaying the Contact Record of an Incoming Caller _________________________ 201
Running a Counter __ 202
Returning GoldMine Record Data __ 203
Processing a Web Import Instruction File___________________________________ 208
Reading an Xbase Expression Without Opening a File ________________________ 208
Adding Merge Fields to a Form __ 209
Deleting Fields from a Form___ 209
Closing a Form Profile ___ 210
Creating an Xbase File with Registered Fields ______________________________ 210
Returning a Field Name for an Expression _________________________________ 211
Returning a Value for Unattached Fields ___________________________________ 211
Counting the Number of Exported Records _________________________________ 211
FormPrintedDoc __ 212
Creating a History Record __ 212
Creating or Updating a Document Link ____________________________________ 214
Displaying a Message Dialog Box __ 215

Adding a Merge Form ___ 216
Playing a Toolbar Macro ___ 218
Creating and Sending a Pager Message ___________________________________ 219
Displaying a Message in the GoldMine Status Bar ___________________________ 220
Converting TLog Timestamps ___ 220
Updating the Sync Log File ___ 221
Importing a Prepared TLog Import File ____________________________________ 222
Forcing Logout ___ 223
Reading Security and Rights __ 223

Macros ___ 225
Executing Macros___ 226
Available Data-Related Macros __ 226
Macros for Merge Forms ___ 233
Macros for the GoldMine License __ 235

Controlling the GoldMine User Interface _____________________________________ 236
Getting Window Information___ 236
Registering for Events ___ 238
Handling GoldMine.UI Events ___ 244
Manipulating Controls Programatically_____________________________________ 248
Executing a Menu Command__ 255
Opening a Mail Record __ 258
Setting a Selected Record in a GoldMine Grid (GoldMine 8.0 or higher)___________ 259
Returning Selected Records in a GoldMine Grid (8.0.1 or higher)________________ 259

GoldMine.RecObj Class__ 260
GoldMine.GMSystemEvents Class ___ 261
Business Logic Functions and Name/Value Pairs ________________________________ 263

Controlling Database Session Handling _____________________________________ 263
Creating or Updating a Contact Record______________________________________ 264
Updating an E-mail Address __ 265
Updating a Web Site Record __ 266
Updating Notes of a Primary Contact Record _________________________________ 266
Creating or Updating an Additional Contact Record ____________________________ 267
Creating or Updating a Detail Record _______________________________________ 268
Creating or Updating a Linked Document ____________________________________ 269
Creating or Updating a Referral __ 270
Creating or Updating Activities___ 271

Creating or Updating a History Record ______________________________________ 275
Creating or Updating a Case Record (GoldMine 8.0 or higher)____________________ 276
Creating or Updating a Case Attachment (GoldMine 8.0 or higher) ________________ 277
Adding a GoldMine User as a Case Team Member (GoldMine 8.0 or higher) ________ 278
Attaching an Automated Process___ 279
Executing an SQL Query ___ 279
Creating a Contact Group __ 280
Adding Contacts to a Contact Group __ 281
Using AddContactGrpMembers __ 282
Reading a Record __ 283
Reading a Contact1 or Contact2 Record _____________________________________ 284
Returning Alerts Attached to a Contact Record ________________________________ 285
Attaching an Alert___ 286
Returning All Alerts ___ 286
Returning a User List __ 287
Returning a User Group Member List _______________________________________ 287
Returning Group Memberships for a Specified User ____________________________ 288
Saving a User Group __ 288
Retrieving the Names of User Groups _______________________________________ 288
Evaluating an Xbase Expression on a Contact Record __________________________ 289
Encrypting Text __ 290
Decrypting Encoded Text___ 291
Retrieving the Default Contact Automated Process_____________________________ 291
Deleting Calendar Items__ 292
Deleting History Items ___ 292

Handling GoldMine Security___ 293
Creating a New GoldMine Login ___ 293
Reading a GoldMine Login__ 293
Retrieving Security Access ___ 294
Retrieving Field-Level Access Rights__ 295
Retrieving Visible Fields__ 295
Checking for Record Curtaining__ 296
Generating a Remote License File__ 296
Removing a Remote License__ 297

E-mail Name/Value Functions ___ 297

Reading a Mail Message ___ 297
Queuing a Message for Delivery ___ 300
Updating a Mail Message __ 302
Saving a Mail Message into GoldMine_______________________________________ 302
Deleting a Message ___ 303
Filing a Message in History ___ 303
Preparing the NV Container for a New Mail Message ___________________________ 304
Preparing the NV Container to Reply to a Mail Message ________________________ 305
Preparing an NV Container to Forward a Mail Message _________________________ 305
Adding an E-mail Center Folder__ 306
Deleting an E-Mail Center Folder___ 307
Obtaining a List of E-Mail Center Folders ____________________________________ 307
FromList__ 307
Accessing E-mail Templates __ 308
Retrieving E-mail Account Information_______________________________________ 308
Retrieving a List of Messages Waiting Online _________________________________ 310
Retrieving Messages __ 311
Deleting Online E-mail Messages __ 312
Return Name/Value Pairs __ 312
Saving a Manual List of Recipients ___ 313
Retrieving a Manual List of Recipients_______________________________________ 313
Managing Internet E-mail Preferences ______________________________________ 313
Validating a Web User Name and Password__________________________________ 318

Manipulating User-Defined Fields and Views ___________________________________ 318
Reading All Field Views __ 319
Deleting a Contact View__ 321
Creating or Modifying a Contact View _______________________________________ 321
Reading Custom Fields __ 323
Modifying the Structure of Custom Fields ____________________________________ 324
Reading Calendar Preferences __ 325
Modifying Calendar Preferences ___ 330
Reading Personal Preferences __ 336
Updating Personal Preferences __ 336
Reading Record Preferences__ 337
Updating Record Preferences ___ 338

Reading Schedule Preferences __ 339
Updating Schedule Preferences ___ 340
Reading Alarm Preferences___ 341
Updating Alarm Preferences __ 341
Reading Lookup Preferences__ 342
Updating Alarm Preferences __ 343
Reading Pager Preferences___ 343
Updating Pager Preferences __ 344
Reading Miscellaneous Preferences __ 345
Updating Miscellaneous Preferences__ 346
Reading the Database Engine Type (7.0 or higher)_____________________________ 346
Reading a List of GoldMine User Groups ____________________________________ 347
Creating or Updating GoldMine User Groups _________________________________ 347
Adding a GoldMine User to a Group __ 348
Removing a GoldMine User from a Group____________________________________ 348
Creating or Updating an Opportunity or Project________________________________ 349

Using ActiveX Plug-in Support___ 351
Using HTML Plug-in Support __ 352
Plug-In Description File __ 352

HTML Plug-in Description File ___ 352
ActiveX Plug-in Description File__ 354

Security and Plug-in Directories__ 356
Security __ 357
Adding a Local Plug-in Directory ___ 357

Sample Plug-ins__ 357
gmail.gme___ 358
External.gme __ 358

gmplus.asp__ 359
Function/Parameter Types__ 364
Conditionals, Operators, and Logical Evaluators_________________________________ 364

Conditionals ___ 365
Operators ___ 366
Logical Evaluators __ 367

Xbase Functions ___ 368

String Functions __ 368
Date Functions___ 372
Numeric Functions __ 374
Miscellaneous Functions ___ 376
CAL.DBF ___ 378
CONTACT1.DBF ___ 379
CONTACT2.DBF ___ 382
CONTGRPS.DBF __ 383
CONTHIST.DBF ___ 383
CONTSUPP.DBF___ 385
INFOMINE.DBF __ 386
LOOKUP.DBF ___ 387
MAILBOX.DBF___ 388
OPMGR.DBF __ 389
PERPHONE.DBF___ 390
RESITEMS.DBF ___ 390
SPFILES.DBF ___ 391
CAL Table __ 394
CONTACT1 Table __ 395
CONTACT2 Table __ 398
CONTGRPS Table__ 399
CONTHIST Table___ 400
CONTSUPP Table__ 401
INFOMINE Table ___ 402
LOOKUP Table __ 403
MAILBOX Table__ 403
OPMGR Table ___ 404
PERPHONE Table__ 405
RESITEMS Table___ 406
SPFILES Table __ 406

GMXS32.DLL Code Examples __ 409
C++ Examples ___ 409

Function prototypes ___ 409
Logging In __ 413
Creating a Contact with Business Logic/ Enumerating a Name Value
Container/DataStream ___ 413

Low-Level Work Area__ 415
Visual Basic Examples___ 416

Function prototypes ___ 416
Logging In___ 884H420
435HCreating a Contact __ 885H420
436HEnumerating a Container ___ 886H420
437HDataStream ___ 887H421
438HLow-Level WorkArea __ 888H421

439HDelphi Examples ___ 889H423
440HFunction prototypes ___ 890H423
441HCreating a Contact __ 891H427
442HEnumerating a Container ___ 892H427
443HDataStream ___ 893H428
444HLow-Level Work Area__ 894H428

445HGeneral Index__ 895H431

About this Manual
This manual provides information for administrators who are integrating with
GoldMine. Other product documentation, available on the installation CD or from
support.frontrange.com, provides comprehensive information about GoldMine
features and functionality. These resources contain information about:

• Using GoldMine to automate your daily business activities.

• Configuring GoldMine to meet your organization’s information and
communications needs.

• Working with technical aspects of GoldMine, including GoldMine data
structure and organization, programming expressions, GoldMine third-
party program interface, and troubleshooting.

For procedures and technical information about setting up the GoldMine remote
synchronization enhancement GoldSync, see the GoldSync Administrator’s Guide.
This guide is available as a .PDF file at the GoldMine Web site at
www.frontrange.com.

The documentation contains references to some Windows-related functionality, such
as explanations for basic mouse functions; however, detailed instructions for how to
use Windows are beyond the scope of this manual. For more information about
Windows, see your Windows 95/98/2000 documentation or related references.

Style Conventions used in this Manual
Integrating with GoldMine uses special symbols and conventions, which are
categorized as print conventions, general conventions, and mouse conventions in the
following sections.

Print Conventions
Print conventions used throughout this manual provide a consistent way of
representing screen displays, command entries, and keyboard characters viewed
while working with GoldMine.

http://www.frontrange.com/

Screen
Items

Menu items, dialog boxes, and field names are printed in a bold typeface
similar to the typeface displayed in GoldMine onscreen displays. For
example, the option to toggle the status bar display appears in print as Status
Bar. In general, any text that appears on the screen is printed to look like the
screen display.

Command
Entries

Commands or other keystroke strings entered by the user are printed in a
monospaced typeface that shows exact spacing between terms.

Keyboard
Keys

References to keys on your PC keyboard are printed as graphic characters
that match the actual keys on your keyboard. For example, the Enter key
appears as e. Commands that require combination keystrokes—that is,
holding down one key while pressing another—are connected by a hyphen (-
). For example, to access the File menu from your keyboard, press a-F.

New Terms New terms are printed in bold italics.

Notes appear throughout the manual to provide additional information on a
topic, such as indicating a procedure that must have been completed before
performing the current procedure. Notes can also call attention to critical
information or important technical details. These notes are identified by the
light bulb symbol and delineated by borders.

Online or print references are listed to provide additional information for
topics. These references are identified by the symbol shown at left and
delineated by borders.

Cautions appear before procedures or other directions that can cause
equipment or data damage if not followed exactly as written. Cautions are
identified by the symbol shown at left and delineated by borders.

General Conventions
General conventions used throughout this manual provide a consistent way of
referencing individual or multi-step actions.

Select refers to executing commands that are available as menu options or making a
choice among available items from a browse window or a drop-down list.

Steps that involve two or more selections from a menu may be presented as a
combination selection; that is, the menu options are presented in sequence, divided
by |. For example, when you read

“To schedule an appointment, select Schedule|Appointment”

select Schedule on the Main Menu to display a drop-down list, from which you can
select Appointment.

Performing
an action described in
a procedure

Mouse Conventions
If you use a multiple-button mouse with GoldMine, the left mouse button is
configured as the primary mouse button. The right mouse button serves as the
secondary button.

The following terms describe mouse actions referenced throughout this manual.

Point Position the mouse pointer until the tip of the pointer rests on the desired area of
input on the screen, such as an option on a pull-down menu.

Click Press and immediately release the left mouse button without moving the mouse.
For example, click OK indicates that you must click the OK button with the mouse.

Right-click Press and immediately release the right mouse button without moving the mouse.

Double-click Click the left mouse button twice in rapid succession.

Drag Click and hold the left mouse button while moving the mouse pointer.

Select the Appointment command
from the Schedule drop-down menu

 21

Introduction to
Integrating with GoldMine

Integrating with GoldMine is designed as a comprehensive resource for developers
to integrate GoldMine with their applications. For best results, we recommend that
you become an experienced GoldMine user before taking on an integration project.
For example, understanding what types of data are better stored as a detail record
instead of a history record will ensure greater success for your project.

In addition to gaining experience with GoldMine, you should be familiar with the
development environment you plan to use. This manual may not provide
programming examples for your preferred development environment. With a good
working knowledge of your chosen programming language, you could learn from
another language’s examples.

This manual provides information to:

• Use one of several methods to integrate with GoldMine.

• Work with either Xbase or SQL database structures to integrate with
GoldMine up to version 6.7.

• Work with either Firebird or MSSQL database structures to integrate with
GoldMine version 7.0.

• Access a variety of support resources to get help from other developers
and GoldMine technicians.

Integrating With GoldMine

22

Methods of Integrating with GoldMine
There are several methods for integrating with GoldMine:

• Dynamic Data Exchange (DDE)

• GMXS32.DLL

• GMXMLAPI.DLL

• GoldMine COM Server

• GoldMine Plug-ins (GoldMine 7.0 or higher)

• Database engine

Integrating via Dynamic Data Exchange
This method is supported by many programming environments, such as C++,
Delphi, Visual Basic, VBA (Office 97—Access, Word, and Excel), WordBasic, FoxPro,
and many others. DDE commands can be sent to GoldMine to make GoldMine
perform a large variety of functions.

Integrating via GMXS32.DLL
You can also integrate with GoldMine using the GMXS32.DLL (The X represents the
main version of GoldMine being used (i.e., 6 for GoldMine 6.0). Using the DLL
method, you can access or maintain your GoldMine data without running
GoldMine.

This DLL has enough functions for data access and synchronization maintenance to
allow nearly full control of all databases and their fields. High-level “business logic”
functions streamline and simplify performing common tasks, such as adding a
contact, scheduling an activity, and so forth. GMXS32.DLL is placed into your
Windows\System directory, and is updated automatically when you update
GoldMine. This DLL does not require a separate license to use.

This method of integration is highly recommended as it automates the task of
adhering to GoldMine business logic rules, security, and synchronization.

Integrating via the GoldMine XML API (GMXMLAPI.DLL)
Another integration method, introduced in GoldMine 6.7, is the GoldMine XML API.
This DLL allows the programmer to pass the GoldMine API an XML document to
integrate with GoldMine. This API is another access method to the high-level
business logic methods and the lower level data functions. The XML API is a COM
object that can easily be used in various programming languages, including in the
development of web applications. Using the versatile XML standard, integrating
with GoldMine has never been easier.

Integrating With GoldMine

 23

Interacting with GoldMine via the GoldMine COM Server
With the release of GoldMine 6.7, a new method of interacting with a running
GoldMine was introduced, the user-interface API. GoldMine is now a COM server.
This method of interaction with GoldMine replaces the DDE functionality. DDE is
still present in GoldMine for legacy integrations, but the new improved COM server
capability adds a wealth of functionality that enables the programmer to control the
GoldMine user-interface like never before. In addition, accessing GoldMine as a
COM server is much easier than DDE in a .Net programming environment.

Integrating via GoldMine Plug-ins
GoldMine 7.0 contains a new mechanism to support ActiveX controls and HTML
based integrations as if they were a part of GoldMine. These structures allow for
rapid integration, ease of use, and security.

Integrating via a Database Engine
The most difficult method of integration involves writing to GoldMine databases via
a database engine. Using this method also involves some work with DLL or DDE to
keep GoldMine synchronization information intact. We do not recommend using
this method because there is a higher likelihood of incorrect implementation, which
could damage GoldMine data.

For best results, do not integrate via a database engine.

Comparing Integration Methods
The following table summarizes the integration methods and whether they require
loading the Borland Database Engine, if GoldMine needs to be running, and if they
require a GoldMine seat. Use this table to help determine the integration methods
that best suits your application needs.

Note: As of GoldMine Version 7.0, the Borland Database Engine is no longer used.
References to BDE in the following table apply to integrations developed in
GoldMine Version 6.7 or lower.

API Method Requires
BDE to
be
loaded?

Requires
GoldMine
to be
running?

Uses
seat?

Best used for

GMXS32.DLL Yes No No Perhaps highest speed, broad range of
functionality

DDE No Yes No Minimal coding, slow speed, less
functionality, only way in older GoldMine’s
of interfacing with GoldMine user
interface

GoldMine COM Server No Yes No Used for interacting with GoldMine user

Integrating With GoldMine

24

(GoldMine.UI,
GoldMine.RecObj, &
GoldMine.SysEvents

interface and also provides lower level
functions. DDE replacement with much
enhanced user interface control.
Requires GoldMine to be running.

GoldMine COM Server
(GoldMine.GoldMineData)

No Yes No Broader range of functionality with
business logic and lower level functions.
Does not require BDE to be loaded.
Alleviates SharedMemLocation errors
commonly found with the GMXS32.DLL.

GMXMLAPI.DLL Yes No Yes Provides same functionality as the
GMXS32.DLL, but provides easier XML
interface

GoldMine Plug-ins No Yes No Provides a platform for developing
GoldMine applications. Supports
integrations developed using ActiveX
Controls or HTML. Very powerful when
used in conjunction with GoldMine APIs.

Direct Access through
data engine (ex. ADO)

No No No NOT RECOMMENDED!!
Does not respect GoldMine security,
does not automatically log
synchronization information, does not
have functionality to generate
AccountNo’s or Recid’s, does not return
encrypted GoldMine data in a readable
format, requires intimate knowledge of
GoldMine data rules.

Resources and Support
In addition to this manual, FrontRange Solutions provides a variety of free resources
to support developers, including:

• API/Programming topics on the FrontRange Forum

• Open Developer Community

• Technology Partner Program

For specific questions and additional information, go to the FrontRange Solutions
Community Forum at: http://forums.frontrange.com

Experienced developers can offer advice or programming help. The newsgroup also
contains advanced or hard-to-find information. This newsgroup is a self-serve
resource and is not monitored or contributed to by FrontRange Solutions Inc.

Open Developer Community
This online self-service resource provides technical documents, code samples,
development tools, the most up-to-date documentation, and a searchable
knowledgebase containing integration information.

To register for the Open Developer Community, go to:
http://www.frontrange.com/pavilion/developerprograms.asp

http://forums.frontrange.com/

Integrating With GoldMine

 25

Technology Partner Program
The FrontRange Solutions Certified Technology Partner Program is intended for
developers who wish to create and market products that integrate with our
GoldMine and HEAT products. These partners seek a close development, marketing,
and sales relationship with FrontRange Solutions Inc.

Members of the Certified Technology Partner Program pay an annual fee and receive
additional benefits over the Open Developer Community, including:

• Certification of your integrated solution (additional fees may apply for
multiple certifications)

• Use of GoldMine and HEAT Technology Partner logos to promote your
product

• Listing on the FrontRange.com website

• Right to participate in beta programs

• Not-for-resale (NFR) licenses of GoldMine and HEAT products

• Discounted product training

• Free and fee-based marketing programs

For more information regarding the Technology Partner Program, go to:
http://www.frontrange.com/pavilion/developerprograms.asp

Integration Tools
The following tools can help greatly when integrating with GoldMine:

DDEREQUESTOR:

A Windows-based freeware that allows you to send DDE commands to GoldMine in
real-time. This utility can help to diagnose problems you may have when using DDE
to integrate with GoldMine.

XMLSPY:

A development environment for modeling, editing, debugging, and transforming all
XML technologies, then automatically generating runtime code in multiple
programming languages.

Technical support for these programs is not available from FrontRange Solutions.

 27

Working with Dynamic
Data Exchange (DDE)

Dynamic Data Exchange (DDE) is the term for the Windows functionality that allows
GoldMine to exchange commands and information with other applications. Using
DDE, one application, referred to as the client application, can request information
from or send commands to another application—referred to as the server application.
The server application then processes the request from the client application. In
response to a client’s request, the server performs a task such as updating or
returning data housed by the server application

GoldMine is designed to act as both a DDE client as well as a DDE server. DDE
topics included in this chapter describe using GoldMine as a DDE server. These
topics are provided for programmers who wish to interface their programs with
GoldMine. If you are not familiar with working with DDE, this technical section may
be of limited value to you.

Integrating With GoldMine

 29

Using DDE in GoldMine
GoldMine can perform a variety of tasks using DDE commands, including:

• Merging data into a document

• Updating database information

• Querying for data

• Identifying telephone numbers automatically

• Linking contact records to an accounting application

• Inserting incoming e-mail

Merging Data into a Document
GoldMine uses DDE to communicate with your word processor. When you perform
a merge, GoldMine uses DDE to send contact information to the word processor of
the selected document template. The word processor receives this information from
GoldMine, places the information from the contact record in appropriate places in
the document, and then prints the document.

GoldMine acts as a DDE client and a DDE server during the document merging
process. First, GoldMine must send a DDE request to the word processor to request
that the word processor open a particular document template. Once the document is
open, the word processor will recognize that the document contains DDE linkage
fields and will ask GoldMine for data to place in these fields. GoldMine, now acting
as a DDE server, will return this information to the word processor, and the word
processor will update its display with the information. Finally, the document can be
printed.

This type of merging can also be performed with other Windows applications, such
as spreadsheets (for example, Microsoft Excel) or database programs (for example,
Microsoft Access).

Updating Database Information
DDE can also be used to update GoldMine databases from another application. For
example, a magnetic card reader application that supports DDE can be interfaced
with GoldMine in such a way that new contact records are automatically entered into
the contact database. Therefore, whenever a trade show attendee’s badge is swiped
through the reader, GoldMine is automatically updated.

Querying for Data
The DDE macros and other functions can query the GoldMine tables and return the
contents to the caller. The [DataStream] command is a high-performance feature that

Integrating With GoldMine

30

can return large blocks of data very quickly. Retrieving data from large databases
may take longer, causing your DDE request to time-out.

Identifying Telephone Numbers Automatically
GoldMine DDE functionality can be used with CallerID or ANI equipment to
automatically identify incoming telephone calls. GoldMine can display the contact
record that matches the telephone number of the incoming call, saving the user time
in looking up the caller.

Linking Contact Records to an Accounting Application
DDE applications can be created to automatically transfer prospect information to an
accounting application when the prospect decides to purchase, saving data entry
time and reducing errors.

Inserting Incoming E-mail
DDE can be used to insert incoming e-mail into GoldMine, allowing GoldMine users
to remain linked with their external e-mail systems.

Linking GoldMine to MS Word for Windows
The GoldMine DDE interface works with any Windows application that supports
DDE; however, every application uses a unique format for executing DDE calls and
for responding to DDE requests. Explaining all of the various methods to use DDE is
beyond the scope of this manual. Instead, this document explores the use of DDE
between GoldMine and another popular Windows application, Word 97 for
Windows. The examples presented should provide a framework for creating DDE
links to other applications.

For details on installing the GoldMine DDE link to Word for Windows, see related
material at support.frontrange.com.

Entering Application, Topic, and Item Names
To establish a DDE conversation with an application that supports DDE, you must
know the application’s service name. The GoldMine service name is GoldMine.

GoldMine supports two service topics:

• SYSTEM: Queries a DDE server on supported data formats—for more
information, see your Microsoft DDE documentation.

• DATA: Accesses all GoldMine DDE functions.

Specific GoldMine DDE functions are accessed by passing a DDE item string to
GoldMine. The item can be a macro, a command, or an expression.

Integrating With GoldMine

 31

DDE Parameters, Functions, Expressions, Macros
Service Topic Item
GOLDMINE SYSTEM <item>

GOLDMINE DATA &<macro>

GOLDMINE DATA <expression>

GOLDMINE DATA [<function>]

GoldMine DDE functions can process a variety of tasks, including database query
and manipulation. Commands are always passed surrounded by brackets. DDE
functions are listed in “Working with DDE Functions” on page 32.

GoldMine can evaluate Xbase expressions by passing the expression as a DDE
function call. For example, the expression CONTACT1->CONTACT will return the
contact name of the current contact record displayed in the currently active contact
record.

When a DDE item begins with an ampersand (&), GoldMine assumes that this item is
a macro, and performs a lookup into an internal macro expansion table. If a match is
found, GoldMine evaluates the macro and returns the result. For a list of GoldMine
DDE macros and their functions, see “DDE Macros” on page 77.

Establishing a DDE Conversation
The following example illustrates using Visual Basic for Applications (VBA) to
establish a DDE conversation.

ch = DDEInitiate("GOLDMINE","DATA")

The DDEINITIATE function is used to establish the DDE link. The first parameter is
the GoldMine service name; the second parameter is the service topic on which this
DDE conversation is based. If the call is successful, the function returns a nonzero
channel number to be used for all subsequent DDE requests to that channel. This
channel number should not be confused with the work area pointer that GoldMine
uses for many DDE functions.

If the DDEINITIATE function returns 0, the conversation could not be established.

Note that the examples within this chapter are written in Visual Basic for
Applications, and the DDEInitiate and DDERequest functions are not a part of
Visual Basic 6.0. DDE functionality is performed via the LinkRequest method in a
textbox. The following example illustrates how the DDE conversation is initiated
and requests are made in Visual Basic 6.0. The code can be written into a form that
never gets displayed (only loaded) and be included in any of your VB projects.

To initiate a DDE conversation:
Public Function DDEInitiate() As Integer

On Error GoTo Err_DDE

 With txtGMDDE

 .LinkMode = vbLinkNone

Integrating With GoldMine

32

 .LinkTopic = "GoldMine|Data"

 .LinkMode = vbLinkManual

 End With

 DDEInitiate = 1

 Exit Function

Err_DDE:

 If Err = 282 Then

 DDEInitiate = 282

 Else

 Err.Description = "DDE Error:" & Err & " :" & Err.Description

 DDEInitiate = 0

 End If

End Function

To request data:
Public Function DDERequest(sExpr As String) As String

 With txtGMDDE

 .LinkItem = sExpr

 .LinkRequest

 DDERequest = .Text

 End With

End Function

With these functions declared in your project, you may then call them where needed
in your code.

Working with DDE Functions
GoldMine supports a variety of DDE functions, which are described in this section.
Each function description includes calling format, description of operation, and an
example of a VBA subroutine using the function.

GoldMine DDE functions allow access to other files or functions. Three categories of
DDE functions provide access to the following:

• Data files

• Records

• Specialized functions

Integrating With GoldMine

 33

Depending on the type of application involved, you would typically select one of
these three access methods; however, you can mix all three access methods within
the same application. The function categories are described on the following pages.

Accessing Data Files
GoldMine provides a complete set of DDE functions that allow low-level access to
the data files. These functions allow you to:

• Open particular data files,

• Query the values of the fields in the records in the data files,

• Add records to the files, and

• Replace data in the records.

This suite of functions is usually used for database applications that need varied
access to GoldMine data.

Adding an Empty Record

Syntax [APPEND(<work area>)]

The Append function is used to add an empty record to a GoldMine data file. Before
using Append, you must open a data file using the Open function. After executing
the Append function, the record pointer is positioned at the new empty record, and
the record is locked and ready to accept field replacements.

When a CONTACT1 record is appended, GoldMine automatically propagates the
new record with the appropriate ACCOUNTNO and CREATEBY values. For all
other records, you must replace the ACCOUNTNO field with the value from the
CONTACT1 record with which the new record is to be linked. For records that
require remote synchronization initialization, GoldMine will automatically
propagate the value of the RECID field when these records are appended.

Parameters
The Append function accepts one parameter, the work area handle of the file to
Append. The work area handle is returned by the Open file when the file is opened.

Return Value
Xbase: The Append function returns the record number of the new record, or 0 if the
file could not be locked.

SQL: The Append function returns the record ID.

EXAMPLE

The following example demonstrates how to add a contact record in GoldMine via
DDE.

Integrating With GoldMine

34

Sub Main()

 Dim sQ

 Dim sWorkArea As String

 Dim lChannel As Long

 Dim sRet As String

 sQ = Chr(34)

 'Open a DDE channel

 lChannel = DDEInitiate("GoldMine", "Data")

 sWorkArea = DDERequest(lChannel, "[Open(Contact1)]")

 If sWorkArea <> "0" Then 'Database was opened

 'Append a new record to Contact1

 sRet = DDERequest(lChannel, "[Append(" + sWorkArea + ")]")

 If sRet <> "0" Then 'Record was Appended

 StatusBar = "New Record Added"

 'Replace Company name with "New Record"

 sRet = DDERequest(lChannel, "[Replace(" + sWorkArea + "," + sQ(34)
+ "Company" + sQ(34) + "," + sQ + "NewRecord" + sQ + ")]")

 If sRet = "1" Then

 StatusBar = "Replaced complete"

 Else

 StatusBar = "Replaced Failed"

 End If

 'Unlock and Close the record

 sRet = DDERequest(lChannel, "[Unlock(" + sWorkArea + ")]")

 sRet = DDERequest(lChannel, "[Close(" + sWorkArea + ")]")

 Else

 StatusBar = "Error Opening Contact1"

 End If

 End If

 'Terminate the DDE Channel

 DDETerminate (lChannel)

End Sub

Closing an Opened File

Syntax [CLOSE(<work area>)]

The Close function is used to release a previously OPENed file when processing is
complete. When access is complete, a file must be CLOSEd to release memory used
by GoldMine to maintain database work areas.

PARAMETERS

The Close function accepts one parameter—the work area handle of the file to close.
The Open file returns the work area handle when the file is opened.

Integrating With GoldMine

 35

RETURN VALUE

The Close value returns 1 if the function was able to successfully close the work area,
0 if an invalid work area handle was passed.

EXAMPLE

See “Adding an Empty Record” on page 33.

Deleting the Current Record

Syntax [Delete(<work area>)]

The Delete function deletes the current record in the specified work area. The record
pointer is not advanced to the next record.

PARAMETERS

The Delete function takes one parameter—the work area value obtained from the
Open function.

EXAMPLE
DDERequest(lChannel, "[Delete(" + sWorkArea + ")]")

Creating a Subset of Records

Syntax [FILTER(<work area>,<expression>)]

The Filter function limits access to data in a GoldMine database by creating a subset
of records based on expression criteria.

PARAMETERS

The Filter function takes two parameters. Enclose each parameter in quotation marks
(“).

The first parameter is the work area handle of the file that you want to read. The
Open function provides this value when the data file is opened.

The second parameter is a valid Xbase expression.

To remove the filter from the database, use a Filter function with an empty string,
such as [FILTER(<work area>,"")].

EXAMPLE

This example will scan the current contact’s history for all activities completed by a
specific user. It works by first setting the Range of history to a specific contact via the
AccountNo. Once the range is set, the Filter is applied to “see” only records for a
specific user within that range.

Sub Main()

 Dim lChannel As Long

 Dim sRet As String

 Dim sWorkArea As String

Integrating With GoldMine

36

 Dim sQ As String

 Dim sAccNo As String

 Dim sUser As String

 Dim bEOF As Boolean

 Dim Counter As Integer

 'Initialize some variables

 Counter = 0

 sQ = Chr(34)

 'Get user input

 sUser = InputBox("Enter a GoldMine username below.")

 'Uppercase and pad the username

 sUser = UCase(Left$(sUser + " ", 8))

 'Start DDE Conversation with GoldMine

 lChannel = DDEInitiate("GoldMine", "Data")

 'Get the current AccountNo

 sAccNo = DDERequest(lChannel, "Contact1->AccountNo")

 'Open the ContHist file

 sWorkArea = DDERequest(lChannel, "[Open(CONTHIST)]")

 'If WorkArea is valid then do our thing

 If sWorkArea <> "0" Then

 'Set the hi/lo range to the AccountNo

 sRet = DDERequest(lChannel, "[Range(" + sQ + sWorkArea + sQ + "," +
sQ + sAccNo + sQ + "," + sQ + sAccNo + sQ + ", 33)]")

 'Set the filter to only return matches where user is a match

 sRet = DDERequest(lChannel, "[Filter(" + sQ + sWorkArea + sQ + ","
+ sQ + "USERID='" + sUser + "'" + sQ + ")]")

 'Go to the Top record

 sRet = DDERequest(lChannel, "[Move(" + sQ + sWorkArea + sQ + ",
TOP)]")

 'Determine if we have at least one match

 If sRet <> "1" Then 'no matches

 bEOF = True

 Else 'We have at least one match

 Do

 'Increment the counter

 Counter = Counter + 1

 'Go to the next record

 sRet = DDERequest(lChannel, "[Move(" + sQ + sWorkArea + sQ + ",
SKIP)]")

 'Determine if we have run out of matching records

 If sRet <> "1" Then bEOF = True

 Loop Until bEOF = True 'Loop until no more matching records

 End If

 'Close WorkArea

 sRet = DDERequest(lChannel, "[Close(" + sQ + sWorkArea + sQ + ")]")

Integrating With GoldMine

 37

 'Display results

 MsgBox (Str$(Counter) + " history records for this contact have a
User = '" + sUser + "'")

 End If

 'Close DDE channel

 DDETerminate (lChannel)

End Sub

Checking for an Xbase or SQL Table

Syntax [IsSQL (<work area>)]

The IsSQL function returns the table type (Xbase or SQL) that is open in a work area.
Using this DDE command, you can determine the most appropriate method to
retrieve information when working with DataStream—see “Returning GoldMine
Record Data” on page 55. For example, when your routine starts, you can open
Contact1 and Cal, issue an IsSQL command to determine the GoldDir and
CommonDir database types, and then close both work areas. You can then send the
appropriate DataStream calls.

PARAMETERS

The IsSQL function takes work area as the only parameter.

RETURN VALUES

IsSQL returns 1 for an SQL database table, or 0 for an Xbase file.

Moving to a Specified Record

Syntax [MOVE(<work area>,<subfunction>,<scope>)]

The Move function will position the record pointer to a particular record in a data
file. Before using Move, you must open a data file using the Open function.

PARAMETERS

The Move function requires either two or three parameters.

The first parameter is the work area handle of the file whose record pointer you
want to position. The Open function provides this value when the data file is
opened.

The second parameter is the name of the Move subfunction that you want to
perform.

Depending on the subfunction, a third parameter can be required.
The following table lists the Move subfunctions and the requirements for the third
parameter:
Valid Move Subfunctions

Subfunction Description 3rd Parameter
TOP Move to first logical record Not required

Integrating With GoldMine

38

Subfunction Description 3rd Parameter
BOTTOM Move to last logical record Not required

SKIP Skip records Optional, records to skip

GOTO Go to a specific record Record number (Xbase), Record ID (SQL)

SEEK Seek a specific record by key Search key value

SETORDER Select an index Index name

Top Positions the record pointer at the first logical record according to the current index
order. For example, if the data file open in the selected work area is CONTACT1.DBF,
and the index order is set to Company, a call to TOP will result in the record pointer
being positioned at a record with a company name, such as AAA Cleaners.

Bottom Positions the record pointer at the last logical record according to the current index
order. For example, if the data file open in the selected work area is CONTACT1.DBF,
and the index order is set to Company, a call to BOTTOM will result in the record
pointer being positioned at a record with a company name, such as Z-best Bakery.

Skip Moves the record pointer record by record. If SKIP is called without the third
parameter, it will move the record pointer to the next logical record according to the
current index order. If SKIP is called with a string numeric as the third parameter, the
record pointer will be moved forward by the indicated number if the value is positive, or
backward if the value is negative. Negative numbers must be passed in quotation
marks, for example “-1”.

Goto Positions the record pointer at the record number (Xbase) or record ID (SQL) specified
by a string numeric passed as the third parameter.

Seek Attempts to locate a record in the data file with an index key that matches the string
passed as the third parameter. Partial key searches are allowed; GoldMine will
position the record pointer at the record with the key that most closely matches the
passed value.

Setorder

Selects an active index for ordering and SEEKing the data file. See “Database
Structures” on page 377 for the appropriate values and collating sequence for each
data file index.

If an invalid index is selected for the data file, none of the MOVE subfunctions will
operate properly.

RETURN VALUE

The Move function can return several values.
Move Return Values

Return Description
0 Error occurred

1 Record pointer successfully moved, or index selected

2 Exact match not found, pointer positioned at closest match

Integrating With GoldMine

 39

Return Description
3 Record pointer positioned at end-of-file (EOF)

4 Record pointer positioned at beginning-of-file (BOF)

An error can be returned under any of the following conditions:

• Invalid work area handle is passed to the function.

• Invalid subfunction is passed.

• Out-of-range record number is passed.

• Nonnumeric value is passed as a third parameter when a numeric value
is expected.

EXAMPLE

The following example will open Contact1, perform various Move operations, and
display the resulting contact name between Moves.

Note that the example below is written in Visual Basic for Applications, and the
DDEInitiate and DDERequest functions are not a part of Visual Basic 6.0. DDE
functionality is performed via the LinkRequest method in a textbox. For more
information, see Establishing a DDE Conversation on page 31.

Sub Main()

 Dim lChannel As Long

 Dim sWorkArea As String

 Dim sRet As String

 Dim iX As Integer

 Dim sSeekVal As String

 Dim sQ As String

 sQ = Chr(34)

 lChannel = DDEInitiate("GoldMine", "Data")

 sWorkArea = DDERequest(lChannel, "[Open(Contact1)]")

 'Goto Top of Database

 sRet = DDERequest(lChannel, "[Move(" + sWorkArea + ",Top)]")

 MsgBox ("Top: Contact=" + DDERequest(lChannel, "[Read(" + sWorkArea
+ ", Contact)]"))

 'Skip forward 1 record

 sRet = DDERequest(lChannel, "[Move(" + sWorkArea + ", SKIP)]")

 MsgBox ("SKIP: Contact=" + DDERequest(lChannel, "[Read(" + sWorkArea
+ ", Contact)]"))

 'Skip X record (x=5)

 iX = 5

 sRet = DDERequest(lChannel, "[Move(" + sWorkArea + ",SKIP," +
Str(iX) + ")]")

 MsgBox ("Skip 5: Contact=" + DDERequest(lChannel, "[Read(" +
sWorkArea + ", Contact)]"))

Integrating With GoldMine

40

 'Goto Bottom of Database

 sRet = DDERequest(lChannel, "[Move(" + sWorkArea + ", Bottom)]")

 MsgBox ("Bottom: Contact=" + DDERequest(lChannel, "[Read(" +
sWorkArea + ", Contact)]"))

 'Skip back 1 record (Note: the -1 must be enclosed in quotes)

 sRet = DDERequest(lChannel, "[Move(" + sWorkArea + ", Skip, " + sQ +
"-1" + sQ + ")]")

 MsgBox ("Skip -1: Contact=" + DDERequest(lChannel, "[Read(" +
sWorkArea + ", Contact)]"))

 'Goto Record 10

 sRet = DDERequest(lChannel, "[Move(" + sWorkArea + ", Goto, 10)]")

 MsgBox ("Goto: Contact=" + DDERequest(lChannel, "[Read(" + sWorkArea
+ ", Contact)]"))

 'Seek for a Company

 sRet = DDERequest(lChannel, "[Move(" + sWorkArea + ",SetOrder,
16)]")

 sSeekVal = UCase(InputBox("Enter a Company to search for"))

 sRet = DDERequest(lChannel, "[Move(" + sWorkArea + ",Top)]")

 sRet = DDERequest(lChannel, "[Move(" + sWorkArea + ", Seek, " + sQ +
sSeekVal + sQ + ")]")

 MsgBox ("Seek: Contact=" + DDERequest(lChannel, "[Read(" + sWorkArea
+ ", Contact)]"))

 ret = DDERequest(lChannel, "[Close(" + sWorkArea + ")]")

 DDETerminate (lChannel)

End Sub

Opening a Data File

Syntax [OPEN(<tablename>)]

The Open function is used to open a GoldMine data file for processing by another
application. This function must be called before calling any GoldMine DDE
functions that work with an individual data file. It is not necessary to use this
function when calling the RecordObj function, because this function opens the
necessary data files automatically.

PARAMETERS

The Open function takes one parameter—the name of the file to open. The following
values are valid for this parameter:
Open Valid Parameters

File Description
CAL Calendar activities file

Integrating With GoldMine

 41

File Description
CONTACT1 Primary contact information file

CONTACT2 Primary contact information file

CONTGRPS Groups file

CONTHIST History records file

CONTSUPP Supplementary records file

INFOMINE InfoCenter file

LOOKUP Lookup file

MAILBOX E-mail Center mailbox file

OPMGR Opportunity Manager file

PERPHONE Personal Rolodex file

RESOURCE Resources file

SPFILES Contact files directory

RETURN VALUE

The Open function returns an integer value representing the handle to the file’s work
area. This value is required for all subsequent access to the file. If the file could not
be opened, or an invalid parameter is passed, the function will
return 0.

EXAMPLE

See “Adding an Empty Record” on page 33.

Limiting GoldMine Search Range

Syntax [RANGE(<work area>,<minimum>,<maximum>,<tag>)]

The Range function activates the index in a table and sets a range of values to limit
the scope of data that GoldMine will search.

PARAMETERS

The Range function requires four parameters.

The first parameter is the work area handle of the file that you want to read. The
Open function provides this value when the data file is opened.

The second parameter is the minimum value of the range. Enclose this parameter in
quotation marks (“).

The third value is the maximum value of the range. Enclose this parameter in
quotation marks (“).

The fourth value is the tag that corresponds to the index file. For details about tags,
see “Database Structures” on page 377.

Integrating With GoldMine

42

EXAMPLE

See “Creating a Subset of Records” on page 35.

Reading a Field Value

Syntax [READ(<work area>,<field>)]

The Read function is used to query a data file for the value of a field. Before using
Read, you must open a data file using the Open function. In addition, you will
probably want to position the record pointer to the record you want to query by
using the Move function.

PARAMETERS

The Read function requires two parameters.

The first parameter is the work area handle of the file that you want to read. The
Open function provides this value when the data file is opened.

The second parameter is the name of the field in the data file whose value you want
to query. You will normally pass only a single field name, such as CONTACT as the
second parameter. However, if you pass a field expression, such as “COMPANY +
CONTACT” GoldMine will attempt to evaluate the expression and return the value of
the expression. When an expression is passed as the second parameter, the
expression must be surrounded by quotation marks.

RETURN VALUE

The Read function returns a character string containing the value in the specified
field, or the value of the specified expression. If an error occurs, the Read function
returns a null string. The error could be caused by an invalid work area handle, an
invalid field being passed, or an expression that GoldMine could not evaluate.

EXAMPLE

See “Moving to a Specified Record” on page 37.

Checking the Current Record Number or Record ID

Syntax [RECNO(<work area>)]

Xbase: RecNo function is used to determine current record number position.

SQL: RecNo function is used to determine the record ID.

PARAMETERS

The RecNo function accepts one parameter—the work area handle of the file. The
work area handle is returned by the Open file when the file is opened.

RETURN VALUE

The RecNo function returns the current record number position, 0 if an invalid work
area handle was passed.

Integrating With GoldMine

 43

EXAMPLE

The following example will get the current Contact1 RecNo and display it in the
GoldMine status bar.

Note that the example below is written in Visual Basic for Applications, and the
DDEInitiate and DDERequest functions are not a part of Visual Basic 6.0. DDE
functionality is performed via the LinkRequest method in a textbox. For more
information, see Establishing a DDE Conversation on page 31.

Sub Main()

 Dim lChannel As Long

 Dim sWorkArea As String

 Dim sRet As String

 Dim sRecNo As String

 Dim sQ As String

 sQ = Chr(34)

 lChannel = DDEInitiate("GoldMine", "data")

 sWorkArea = DDERequest(lChannel, "[Open(Contact1)]")

 sRecNo = DDERequest(lChannel, "[RecNo(" + sWorkArea + ")]")

 sRet = DDERequest(lChannel, "[Close(" + sWorkArea + ")]")

 sRet = DDERequest(lChannel, "[StatusMsg(" + sQ + "RecNo=" + sRecNo +
sQ + ")]")

 MsgBox ("GoldMine's status bar should now display the RecNo ")

End Sub

Changing a Field Value

Syntax [REPLACE(<work area>,<field>,<value>,<append>)]

The Replace function is used to change the value in a particular field in one
GoldMine data file. Before using Replace, you must open a data file using the Open
function. In addition, you will probably want to position the record pointer to the
record you want to change either by using the Move function, or by adding a new
record with the Append function.

After executing the Replace function, GoldMine will update the specified field with
the new value, and update the appropriate remote synchronization data structures
to indicate that the field was changed.

In a network environment, GoldMine automatically locks the record before
performing the replacement. The record is not automatically unlocked, allowing for
fast multiple field replacements. The record is automatically unlocked when a Close,
Move, or Unlock command is issued on the work area.

PARAMETERS

The Replace function requires three parameters and has an optional fourth
parameter.

Integrating With GoldMine

44

The first parameter is the work area handle of the file in which you want to perform
the replacement. The Open function provides this value when the data file is opened.

The second parameter is the name of the field to be replaced. See “Database
Structures” on page 377 for information on the name of fields in each GoldMine data
files. If you attempt to replace a field that does not exist in the file open in the
specified work area, the Replace function will fail.

The third parameter is the value to replace. This value must be enclosed in quotation
marks. The replace value must be a string value. If the replacement field is a date or
numeric field, GoldMine will convert the string data to the appropriate data type
prior to performing the replacement.

The fourth parameter will add data instead of replacing data. Using this parameter,
you can insert large amount of text into a notes field. To append instead of replace
incoming data from the third parameter, pass 1 as the fourth parameter. You can set
up a loop to feed notes in 256-byte segments to override the 256-byte limit for
inbound DDE requests.

RETURN VALUE

If the file was replaced, the Replace function returns 1. If the field could not be
replaced, 0 is returned. The failure can be caused under any of the following
conditions:

• Invalid parameter, such as an invalid work area handle.

• Invalid field name.

• Record already locked by another user.

EXAMPLE

See “Adding an Empty Record” on page 33.

Performing a Sequential Search

Syntax [SEARCH(<work area>,<expression>,<index>)]

The Search function is used to perform a sequential search on a file. Unlike Move,
Search scans the table, one record at a time, looking for a record that satisfies the
search condition. The search condition can be any Xbase expression that GoldMine
understands, but is usually an expression that tests the value of one or more fields in
the file. When a match is found, the record pointer is located at the matching record.

Search starts with the record that immediately follows the current record (the next
logical record according to the selected index order) and continues until a match is
found or the end of file is encountered. Because of this, Search can be called
repeatedly to return a list of records that satisfy the search condition.

PARAMETERS

The Search function takes three parameters.

Integrating With GoldMine

 45

The first parameter is the work area handle of the file you want to search. The Open
function provides this value when the data file is opened.

The second parameter is the search expression, such as "CITY='Los Angeles'"
The expression must be surrounded by quotation marks, and any string literal
characters with the expression must be surrounded by single quotes (').

The third parameter is the optional index order to use when searching the data file.
When this parameter is not specified, the data file is searched by record number
(physical) order. See “Database Structures” on page 377 for the appropriate values
and collating sequence for each data file’s indexes.

If an invalid index is selected for the data file, the Search function will not operate
properly.

RETURN VALUE

The Search function can return several values.
Search Return Values

Return Description
0 Error occurred or match could not be found

>1 Match found; return value indicated current physical record number (Xbase)
or record ID (SQL)

An error can be returned if an invalid work area handle is passed to the function, or
if an invalid search condition is passed.

EXAMPLE

The following example will prompt the user for a city name, then display the contact
name for the first matching record.

Note that the example below is written in Visual Basic for Applications, and the
DDEInitiate and DDERequest functions are not a part of Visual Basic 6.0. DDE
functionality is performed via the LinkRequest method in a textbox. For more
information, see Establishing a DDE Conversation on page 31.

Sub Main()

 Dim lChannel As Long

 Dim sWorkArea As String

 Dim sRet As String

 Dim sSeekVal As String

 Dim sQ As String

 sQ = Chr(34)

 lChannel = DDEInitiate("GoldMine", "Data")

 sWorkArea = DDERequest(lChannel, "[Open(Contact1)]")

 'Search for a City

 sSeekVal = UCase(InputBox("Enter a City to search for"))

 sRet = DDERequest(lChannel, "[Move(" + sWorkArea + ",Top)]")

Integrating With GoldMine

46

 sRet = DDERequest(lChannel, "[Search(" + sWorkArea + "," + sQ +
"Upper(CITY)='" + sSeekVal + "'" + sQ + ")]")

 If sRet = "" Then

 MsgBox ("Search: No Match")

 Else

 MsgBox ("Search: Contact=" + DDERequest(lChannel, "[Read(" +
sWorkArea + ", Contact)]"))

 End If

 ret = DDERequest(lChannel, "[Close(" + sWorkArea + ")]")

 DDETerminate (lChannel)

End Sub

Unlocking a Record

Syntax [UNLOCK(<work area>)]

The Unlock function unlocks a record previously locked by a call to either Append
or Replace. GoldMine does not specifically release a lock on a record until you call
Unlock, allowing you to perform multiple field replacements quickly. Before using
Unlock, you must open a data file using the Open function.

After calling Unlock, GoldMine will also update the remote synchronization data
structures to indicate the date and time that the record was modified.

PARAMETERS

The Unlock function accepts one parameter—the work area handle of the file to
close. The work area handle is returned by the Open file when the file is opened.

RETURN VALUE

The Unlock function returns 1 if the record was unlocked, or 0 if an invalid work
area handle was passed to the function.

EXAMPLE

See “Adding an Empty Record” on page 33.

Accessing Contact Records
For specific applications that need access to the GoldMine contact database at the
logical level, the RecordObj function is the preferred access method. Unlike the
low-level DDE functions, the RecordObj function maintains all of the relationships
between the various GoldMine files. This access method is most often used for
document merging functions such as word processor mail merges or placing
information into a spreadsheet.

Linking GoldMine Fields with an External Application

Syntax [RECORDOBJ(<subfunction>,<scope>)]

Integrating With GoldMine

 47

The RecordObj function is a specialized function designed to link DDE fields in a
document application, such as a word processor or spreadsheet. Using RecordObj,
an application can access the contact record in a high-level fashion, rather than
opening the CONTACT1.DBF and CONTACT2.DBF files using Open.

Calling RecordObj within a DDE program is equivalent to viewing and
manipulating the contact record within GoldMine. The calling program can control
the record pointer in the contact record much the same way a GoldMine user can
move the record pointer. In fact, RecordObj can be called in such a way as to create a
minimized contact record in the GoldMine work area display.

The primary differences between using Open, Move, and Read to access contact
information and using RecordObj are described in the following table.
Differences in Accessing Contact Information

Using Open, Move, Read Using RecordObj
Any filter or group that is active on a contact
record in GoldMine is ignored when files are
accessed using Open and Move

RecordObj can work in conjunction with a filter or
group. Any records that do not match the filter
expression, or are not members of the group, are
skipped

The only way to maintain the relationship
between the CONTACT1 and CONTACT2
files, is to manually reposition CONTACT2
whenever the record pointer is moved in
CONTACT1.DBF.

Automatically maintains the relationship between
CONTACT1 and CONTACT2, and other contact
information such as history.

 RecordObj does not contain a method to read
specific fields from the database. It is expected that
the application will use DDE link fields or the Expr
function to query information from the database,
and use RecordObj function calls only to position
the record pointer.

 When RecordObj is used to move the record
pointer, the contact record screen in GoldMine is
updated, and a DDE Warm Link Advise message
is sent to all DDE link fields, automatically updating
these fields with the new contact information.

PARAMETERS

The RecordObj function requires either one or two parameters.

The first parameter is the name of the RecordObj subfunction that you want to
perform.

Depending on the subfunction, a second parameter can be required. The following
table lists the RecordObj subfunctions and the requirements of the second parameter.
Valid RecordObj Functions

Subfunction Description 2nd Parameter
SETOBJECT Create or select contact record Optional object pointer

TOP Move to first logical record Not required

Integrating With GoldMine

48

Subfunction Description 2nd Parameter
BOTTOM Move to last logical record Not required

SKIP Skip records Optional, recs to skip

SEEK Seek a specific record by key Search key value

SETORDER Select an index Index tag number

GETORDER Return the currently active index
name

Not required

SETTITLE Set the contact record title Text of title

CLOSEWINDOW Close the contact record None

SETRECORD Change the behavior of SKIP, TOP,
and bottom

Name of data structure to be queried

REFRESH Repaint the contact record Not required

GETRP Return the point to the current
contact record (Xbase) or the record
ID (SQL)

Not required

GETFILTEREXPR Get the activated filter’s expression Not required

GETGROUPNO Get the GroupNo of the activated
group

Not required

Setobject The SetObject call must be called prior to calling any other RecordObj subfunction
to specify the contact record that subsequent RecordObj calls will manipulate.
If SetObject is called without a second parameter, subsequent calls to RecordObj
will manipulate the currently active contact record. The user can change the active
contact record in GoldMine while the DDE conversation is active, but this will not
affect the contact record that is linked to the RecordObj function.
If SetObject is called with a second parameter of 0, GoldMine will create a
minimized contact record in the work area display, and subsequent calls to
RecordObj will manipulate that contact record. If SetObject is called with a second
parameter of 1, GoldMine will create a minimized contact record in the work area
display and copy any filter or group active on the last used contact record into the
newly minimized contact record.
If RecordObj is called with a specific pointer number, GoldMine will attempt to
establish a link with that contact record. A client application can obtain this pointer
only when using the GoldMine document merging feature, when GoldMine, acting
as a DDE client, passes this long pointer as the seventh parameter.

Top Positions the record pointer at the first logical record according to the current index
order. For example, if the contact record index order is set to Company, a call to
Top will result in the record pointer being positioned at a record with a company
name such as “AAA Cleaners.” GoldMine will also update the contact record to
display the new record.

Bottom Positions the record pointer at the last logical record according to the current index
order. For example, if the contact record index order is set to Company, a call to
Bottom will result in the record pointer being positioned at a record with a
company name such as “Z-best Bakery.” GoldMine will also display the new
record.

Integrating With GoldMine

 49

Skip The Skip subfunction moves the record pointer on a record-by-record basis.
If Skip is called without the second parameter, it will move the record pointer to the
next logical record according to the current index order.
If Skip is called with a string numeric as the second parameter, the record pointer
will be moved forward by the indicated number of records if the value is positive,
or backwards if the value is negative. Negative numbers must be passed in
quotation marks, for example “-1.” GoldMine will also update the display to show
the new record.
The Skip subfunction is sensitive to any filter or group that can be active on the
contact record in GoldMine. For example, if the user applies a filter to the contact
record in GoldMine, the Skip subfunction will skip over any records that do not
match the filter expression.

Goto The Goto subfunction positions the record pointer at the record number specified
by a string numeric passed as the second parameter.

Seek Attempts to locate a record in the data file with an index key that matches the
string passed as the second parameter. Partial key searches are allowed, and
GoldMine will position the record pointer at the record with the key that most
closely matches the passed value. GoldMine will update the display to show the
new record.

Setorder Selects an active index for ordering and SEEKing the contact database. Only the
twelve CONTACT1 indexes can be used for this subfunction. See “Database
Structures” on page 377 for the appropriate values and collating sequence for
each data file’s indexes.

Getorder Returns the active index being used to sort the contact records. See “Database
Structures” on page 377 for the appropriate values and collating sequence for
each data file’s indexes.

Settitle Changes both the text in the title bar of the contact record’s window and the text
displayed below a minimized contact record. For example, a DDE application that
merges contact records within a document can modify the contact record title to
indicate the number of records that have been merged. Any text that is passed as
the second parameter must be enclosed in quotation marks, and will be used as
the new title’s text.

Closewindow Closes the contact record when processing is complete. Issuing this call is
equivalent to selecting Close from the contact record’s system menu.

Setrecord Changes the behavior of the Skip, Top, and Bottom subfunctions to allow ancillary
contact information (such as additional contacts) to be queried using the
RecordObj function. Normally, GoldMine assumes the CONTACT1 data file to be
the parent data file, and when the Skip, Top, or Bottom subfunction is called, the
record pointer is repositioned in this data file. When accessing information in
GoldMine tabs, however, the Skip, Top, and Bottom subfunctions must be able to
reposition the record pointer in the data file that stores these items (CONTSUPP).
The SetRecord subfunction accepts the name of the data structure being queried
as the second parameter. Valid data structure names are listed in the following
table.

Setrecord Valid Structure Names

Data Structure Name Description
CONTACTS Additional contacts

Integrating With GoldMine

50

Data Structure Name Description
PROFILE Profile records

REFERRALS Referral records

LINKS Linked documents

PRIMARY Primary contacts

Using SetRecord changes the behavior of the Skip, Top, and Bottom subfunctions.

The first parameter is the name of the RecordObj subfunction that you want to
perform. When Top is called, GoldMine will position the record pointer in the
supplementary data file so that the first record containing the selected information is
the current record. For example, if SetRecord is used to select CONTACTS, Top will
position the record pointer on the first additional contact record for the current
contact. The record pointer in the primary information data file (CONTACT1) will
not be moved, so the name of the current company will remain the same. Bottom
behaves in a similar manner.

Skip will position the record pointer in the supplementary file on the next record of the
selected type. For example, if SetRecord is used to select CONTACTS, Skip will
position the record pointer in the supplementary file on the next additional contact
record for the current contact. The record pointer in the primary information data file
(CONTACT1) will not be moved, unless the record pointer in the supplementary file
was already positioned at the last record of the selected type; then GoldMine will
reposition the record pointer in the primary information data file (CONTACT1) to the
next contact record and reset the record pointer in the supplementary file to the first
supplemental record of the selected type. DDE macros are also sensitive to the setting
of the SetRecord subfunction—see “DDE Macros” on page 77.

Refresh Repaints the contact record

GetRP Obtains a pointer of the currently selected contact record

GetGroupNo Returns the group number (if a group is activated)

GetFilterExpr Returns the filter expression (if a filter is activated)

RETURN VALUE

All RecordObj subfunctions return 1 if the function was completed successfully or 0
if an internal error occurred.

EXAMPLE

The following example will count the number of additional contacts for the current
contact.

Note that the example below is written in Visual Basic for Applications, and the
DDEInitiate and DDERequest functions are not a part of Visual Basic 6.0. DDE
functionality is performed via the LinkRequest method in a textbox. For more
information, see Establishing a DDE Conversation on page 31.

Integrating With GoldMine

 51

Sub Main()

 Dim lChannel As Long

 Dim sAccountNo As String

 Dim sRet As String

 Dim sANRT As String

 Dim iAddCount As Integer

 lChannel = DDEInitiate("GoldMine", "Data")

 sAccountNo = DDERequest(lChannel, "Contact1->AccountNo")

 sRet = DDERequest(lChannel, "[RecordObj(SetObject, 1)]")

 sRet = DDERequest(lChannel, "[RecordObj(SetRecord, Contacts)]")

 sRet = DDERequest(lChannel, "[RecordObj(Top)]")

 sANRT = DDERequest(lChannel, "Trim(ContSupp-
>AccountNo)+Trim(ContSupp->RecType)")

 iAddCount = 0

 While sANRT = sAccountNo + "C"

 iAddCount = iAddCount + 1

 sRet = DDERequest(lChannel, "[RecordObj(Skip)]")

 sANRT = DDERequest(lChannel, "Trim(ContSupp-
>AccountNo)+Trim(ContSupp->RecType)")

 Wend

 sRet = DDERequest(lChannel, "[RecordObj(CloseWindow)]")

 MsgBox (Str(iAddCount) + " Additional Contacts")

 DDETerminate (lChannel)

End Sub

Accessing Specialized DDE Functions
GoldMine provides a set of specialized functions for performing specific tasks, such
as adding document links to the contact database or sending GoldMine a CallerID
message.

Retrieving Login Credentials for Use with the GMXS32.DLL

Syntax [GetLoginCredentials]

GOLDMINE VERSION 5.70.20222

The GetLoginCredentials function is used to retrieve a string containing login
credentials to be used for logging into the GMXS32.DLL through the
GMW_LoadAPI, GMW_LoadBDE or GMW_Login functions. Using this option, it is
not necessary to prompt the integration user for login information if GoldMine is
running. The login credentials received are only valid for 30 seconds, so do not store
them and attempt to use them at a later time. The string returned by this command
should be used as the password to the appropriate login function, where the
username is “*DDE_LOGIN_CREDENTIALS*”.

Integrating With GoldMine

52

EXAMPLE

This example retrieves various parameters from GoldMine and passes them to the
GMW_LoadAPI or GMW_LoadBDE function in the GMXS32.DLL.

The following example is written in Visual Basic 6.0 using the DDEInitiate and
DDERequest functions defined in Establishing a DDE Conversation on page 31.

With frmDDE
 iResult = .DDEInitiate
 If iResult Then
 frmPaths.txtSysFolder = .DDERequest("&SysDir")
 frmPaths.txtGoldDir = .DDERequest("&GoldDir")
 frmPaths.txtCommonDir = .DDERequest("&CommonDir")
 sLoginCredentials = .DDERequest("[GetLoginCredentials]")

 lResult = GMW_LoadBDE(frmPaths.txtSysFolder,
frmPaths.txtGoldDir, _
 frmPaths.txtCommonDir, “*DDE_LOGIN_CREDENTIALS*", _
 sLoginCredentials)

End With

Retrieving the RecID of the Current Opportunity

Syntax [GetActiveOppty]

GOLDMINE VERSION 5.70.20222

The GetActiveOppty function is used to retrieve the RecID of the currently selected
Opportunity in the Opportunity Manager.

RETURN VALUE

The GetActiveOppty function returns the record ID of the currently selected
opportunity. If no opportunity is available, an empty string is returned.

EXAMPLE

The following example reads the currently selected Opportunity’s record ID and
displays the value in a message box.

The following example is written in Visual Basic 6.0 using the DDEInitiate and
DDERequest functions defined in Establishing a DDE Conversation on page 31.

With frmDDE
 iResult = .DDEInitiate
 If iResult Then
 sResult = .DDERequest("[GetActiveOppty]")
 MsgBox sResult
 End If
End With

Completing a Calendar Activity

Syntax [CalComplete(<RecNo>,<ActvCode>,<ResultCode>,
<User>,<Ref>,<Notes>,<RetainDate>)]

The CalComplete function is used to complete an activity from the Calendar.

Integrating With GoldMine

 53

PARAMETERS

The CalComplete function takes up to seven parameters. All parameters must be
passed in quotation marks.

The first parameter is the record number of the calendar activity to be completed.

The second parameter is the Activity Code. This parameter is optional.

The third parameter is the Result Code. This parameter is optional.

The fourth parameter is the User. If this parameter is not specified, the User field
defaults to the currently logged user.

The fifth parameter is the history Reference. This parameter is optional.

The sixth parameter is the Notes for the history record. This parameter is optional.

The seventh parameter indicates whether the function should retain its original date,
or use the current date/time. To retain the original date, set this value to 1.

RETURN VALUE

The CalComplete function returns the record number (Xbase) or record ID (SQL) of
the new history record created.

EXAMPLE

This example will open the CAL file, read the current RecNo (Xbase), or RecID
(SQL), and complete the record to History.

Note that the example below is written in Visual Basic for Applications, and the
DDEInitiate and DDERequest functions are not a part of Visual Basic 6.0. DDE
functionality is performed via the LinkRequest method in a textbox. For more
information, see Establishing a DDE Conversation on page 31.

Sub Main()

 Dim lChannel As Long

 Dim sRet As String

 Dim sRecNo As String

 Dim sHRecNo As String

 Dim sWorkArea As String

 Dim sQ As String

 sQ = Chr(34)

 lChannel = DDEInitiate("GoldMine", "Data")

 sWorkArea = DDERequest(lChannel, "[Open(CAL)]")

 sRecNo = DDERequest(lChannel, "[RecNo(" + sQ + sWorkArea + sQ +
")]")

 sHRecNo = DDERequest(lChannel, "[CalComplete(" + sQ + sRecNo + sQ +
")]")

 MsgBox ("New History Record Number: " + sHRecNo)

 DDETerminate (lChannel)

Integrating With GoldMine

54

End Sub

Displaying the Contact Record of an Incoming Caller

Syntax [CALLERID(<telephone>,<message>,<display dialog>)]

 [CallerIDAll(<phone>, <message>, <displayDlg>, <bUPhone>)]

The CallerID and CallerIDAll functions are used to inform the GoldMine user that
an incoming call has been identified by Automatic Number Identification (ANI)
equipment attached to the telephone system. By using the caller ID functions,
GoldMine can perform a lookup on the contact database, and attempt to locate a
contact record with a telephone number that matches the telephone number
extracted by the ANI device.

With the caller ID functions, GoldMine can automatically display the contact record
of the caller. A dialog box is displayed, allowing the user to select an action. A CallerID
function parameter is used to specify the message in the dialog box.

The two functions perform the same functionality with the difference of the
CallerIDAll command will search all phone numbers for the contact record (except
FAX), instead of just the Phone1 field.

PARAMETERS

The caller ID functions accept three parameters. The CallerIDAll function accepts a
fourth parameter that the CallerID function does not:

The first parameter is the telephone number of the caller as captured by the ANI
device. The calling application is responsible for formatting the telephone number
that appears in the Phone1 field in GoldMine. Enclose this parameter in quotation
marks (“).

The second parameter is the optional message to be displayed in the dialog box in
GoldMine. Enclose this parameter in quotation marks (“).

The third parameter specifies whether the dialog box is displayed. This parameter is
the sum of the required options. For example, to display the caller’s contact record in
the current window if the record is found, or to display the contact listing if the
caller’s phone number is not found, specify 6 (2+4) as the <display dialog>
parameter. The following table lists valid parameter values.
CallerID Parameters

Value Description
0 Dialog box is displayed (default when third parameter is not passed)

1 Dialog box is not displayed, and contact record is displayed in a new contact record

2 Dialog box is not displayed, and contact record is displayed in the current contact record

4 Contact Listing is displayed when GoldMine cannot find the contact’s telephone number.
To activate this option, add this value to the third parameter value.

8 Restores input focus to the window that had input focus just before CALLERID is
called—used by applications that control the entire interface.

Integrating With GoldMine

 55

The fourth parameter that is only accepted by the CallerIDAll function is whether or
not to search the UPhone fields stored in Contact2. Set to 1 to search the UPhone
fields, or 0 to omit the UPhone fields.

RETURN VALUES

CallerID Return Values
Return Description
0 Error occurred

1 Contact record found

2 Contact record not found

EXAMPLE

The following example demonstrates the CallerID function.

Note that the example below is written in Visual Basic for Applications, and the
DDEInitiate and DDERequest functions are not a part of Visual Basic 6.0. DDE
functionality is performed via the LinkRequest method in a textbox. For more
information, see Establishing a DDE Conversation on page 31.

Sub Main()
 Dim lChannel As Long
 Dim sRet As String
 Dim sPhone As String
 Dim sQ As String

 sQ = Chr(34)
 lChannel = DDEInitiate("GoldMine", "Data")
 sPhone = InputBox("Enter Phone to Look Up. Format:(###)###-####")
 sRet = DDERequest(lChannel, "[CallerID(" + sQ + sPhone + sQ + ")]")
End Sub

Running a Counter

Syntax [COUNTER(<string>,<inc>,<start>,<action>)]

The Counter function returns a sequence of consecutive numbers each time the
expression is evaluated.

PARAMETERS

The counter name must be unique, and can be a maximum of 10 characters. Each
evaluation of the Counter function increments the counter by the <inc> value.

The <start> and <action> parameters are optional. When <action> is 1, the start
value resets the counter. When <action> is 2, the counter is deleted. Counter stores
the count value between GoldMine sessions, and it is shared by all GoldMine users.

GoldMine can track an unlimited number of uniquely named counters. The counter
values are stored in the LOOKUP table.

RETURN VALUE

The Counter function returns a number incremented by <inc>.

Integrating With GoldMine

56

EXAMPLE
[Counter(“InvoiceNo”,1,1000)]

Returning GoldMine Record Data

Syntax [DATASTREAM(<subcommand>,<parameter>)]

DataStream returns the data of ordered records from any GoldMine table using the
most efficient method possible. The caller can specify the fields and expressions to
return, as well as the range of records to return. A filter can optionally be applied to
the data set.

The DataStream method allows for many useful applications. One example would be
to publish the contents of GoldMine data on the Internet by merging HTML
templates with the data returned by DataStream. Web pages can be created to display
GoldMine data requested by a visitor. Based on the visitor’s selections, a company
could dynamically present a variety of HTML pages, such as:

• Addresses of product dealers in a particular city

• Financial numbers stored in Contact2

• Seating availability of upcoming conferences

With a fast Internet connection and a strong SQL server, the GoldMine client could
simultaneously respond to dozens of requests.

RECORD SELECTION

The DataStream command consists of four subcommands. Each subcommand takes
different parameters. The subcommands are shown below, in the order in which
they must be called:

[DataStream("range", sTable, sTag, sTopLimit, sBotLimit, sFields, sFilter, sFDlm,
sRDlm)]
[DataStream("query", sSQL, sFilter, sFDlm, sRDlm)]
[DataStream("fetch", nRecords, iHandle)]
[DataStream("close", iHandle)]

The “range” or “query” subcommands must be called first to request the data. The
“range” and “query” subcommands return an integer handle, iHandle, which must
be passed to the “fetch” and “close” subcommands. You must use either “range” or
“query”—not both.

[DataStream("range", sTable, sTag, sTopLimit, sBotLimit, sFields, sFilter, sFDlm,
sRDlm)]

PARAMETERS

The sTable, sTag, sTopLimit, and sBotLimit parameters determine the range of
records to scan, similar to the DDE SETRANGE command. The sFields parameter
specifies the requested fields and expression to return.

The sField parameter passed to the “range” subcommand should consist of the field
names and Xbase expressions to evaluate against each record in the data set. Each

Integrating With GoldMine

 57

field must be terminated with the semicolon (;) character. Xbase expressions must be
prefixed with the ampersand (&) character and terminated with a semicolon.

The other “range” parameters are optional.

RETURN VALUE

The “range” subcommand returns a range of records based on an index.
[DataStream("query", sSQL, sFilter, sFDlm, sRDlm)]

The “query” subcommand sends the sSQL query for evaluation on the server.

PARAMETERS

The SQL query can join multiple tables and return any number of fields. The
optional sFilter parameter can specify a Boolean Xbase filter expression to apply to
the data set (even on SQL tables), similar to the DDE SETFILTER command. The
optional sFDlm and sRDlm parameters can override the return packet’s default field
and record delimiters of CR and LF.

[DataStream("fetch", nRecords, iHandle)]

The “fetch” subcommand returns a single packet string that contains the requested
data from all records processed by the current “fetch” command, as specified by the
second nRecords parameter. iHandle must be the value returned from “range” or
“query.” The “fetch” command can be issued multiple times, with positive and
negative values, to scroll down or up the cursor. See “Return Packet” below.

[DataStream("close", iHandle)]

The “close” subcommand must be called when the operation is complete. Unclosed
data streams will leak memory and leave the database connections needlessly open.
Passing an iHandle of 0 closes all open DataStream objects (of all DDE
conversations).

EXAMPLE 1

The following commands request the first 100 cities from the Lookup file, including
the city name and record number (RecID under SQL):

[DataStream("range", "lookup", "lookup", "CITY", "CITYZ", "Entry;
&RecNo();")]
[DataStream("fetch", 100, iHandle)]
[DataStream("close", iHandle)]

EXAMPLE 2

The following commands request the first 10 profiles of the current contact record,
followed by a request for the next 50:

[DataStream("range","contsupp","contspfd", sAccNo+"P", sAccNo+"P",
"Contact;ContSupRef;")]
[DataStream("fetch", 10, iHandle)]
[DataStream("fetch", 50, iHandle)]
[DataStream("close", iHandle)]

RETURN PACKET

The “fetch” command returns a single packet string containing the data from all
requested records. The packet includes a header record, followed by one record for

Integrating With GoldMine

58

each record evaluated by “fetch.” Within each record in the packet, the fields are
separated by a Field Delimiter, the carriage return character by default (13 or 0x0D).
The records in the packet are separated by the Record Delimiter, the line feed
character by default (10 or 0x0A). These delimiters are convenient when the
requested data does not contain notes from blob fields. Otherwise, you must
override the default delimiters by passing other delimiter values to the “range” and
“query” commands. The characters 1 and 2 would probably make good delimiters
for packets with notes.

The City Lookup example from above might return a packet of data similar to:
3000-0004
Boston|23
London|393
Los Angeles|633
New York|29

The packet header record consists of two sections. The first byte can be 0, 3
or 4. Zero indicates that more records are available, which could be fetched with
another “fetch” command. A value of 3 indicates the end-of-file (EOF), and 4
indicates the beginning-of-file (BOF). The number following the dash indicates the
total number of data records contained in the packet.

Packets should be designed to be 8K to 32K. DataStream takes about as much time to
read three records as it does to read 30. For best performance, adjust the number to
records requested by the “fetch” command to return packets of 8K to 32K.

PERFORMANCE

DataStream is the fastest way to read data from GoldMine tables. Used correctly, the
GoldMine DataStream will return the data faster than most development
environments would directly. DataStream offers the following advantages:

1. DataStream issues a single, efficient SQL query or Xbase seek to retrieve the
records from the back-end database to the local client. On SQL databases,
requests of a few hundred records could be sent from the server to the client
with a single network transaction, thereby minimizing network traffic.

2. All fields and expressions are parsed initially by the “range” and “query”
commands, then quickly evaluated against each record in the “fetch”
command. Other DDE methods (and development environments) require
that each field be parsed and evaluated each time the field’s data is read. This
can save a significant amount of time when reading hundreds or thousands
of records.

3. Only three DDE calls are required to read all the data. Using traditional
record-by-record querying would require one DDE call for each field of each
record (reading 10 fields from 50 records would require 500 DDE calls).

4. All the work to gather and format the data is done in fast and efficient C. The
caller needs only to parse the resulting packet string.

The “range” and “query” commands execute equally fast on SQL databases. The
“range” command executes much faster on Xbase tables than the “query” command.

Integrating With GoldMine

 59

EXAMPLE 3

The following DataStream command returns all e-mail addresses in the current
contact file.

[DataStream("range", "contsupp","contspfd","PINTERNET A","PINTERNET
B","ContSupRef;")]
[DataStream("fetch", 999, 1)]
[DataStream("close", 1)]

To return only the e-mail addresses of people at FrontRange Solutions, add a filter to
the “range” command:

[DataStream("range", "contsupp","contspfd","PINTERNET A","PINTERNET
AZ", "ContSupRef;AccountNo;&Recno();", "'@goldmine.com' $
lower(ContSupRef)")]

EXAMPLE 4

The following DataStream returns all entries from all F2 lookups. The fields are
delimited with a comma, and the records with the default LF.

[DataStream("range", "lookup", "lookup", "A",
"Z","FieldName;Entry;","",",")]
[DataStream("fetch", 2000, 1)]
[DataStream("close", 1)]

EXAMPLE 5

The following DataStream returns the exact packet as the one above, but using an
SQL query:

[DataStream("query", "select fieldname, entry from lookup where
fieldname > 'A' order by fieldname, entry", "",",")]

Processing a Web Import Instruction File

Syntax [ExecIniImp(<filename>)]

GoldMine can send a DDE command to process a Web import instruction file. Using
a DDE command allows other applications to create contact records in GoldMine. To
start processing an instruction file via DDE, send the ExecIniImp(<filename>)
command; for example, [ExecIniImp(“c:\goldmine\imp.ini”)].

For details about setting up and working with the GoldMine Web Import Gateway, see
“Capturing Web Data” in Maintaining GoldMine.

Reading an Xbase Expression Without Opening a File

Syntax [EXPR(<expression>)]

The Expr function is similar to the Read function in that it attempts to evaluate an
Xbase expression and return the result as a string. The Expr function, however, does
not require you to open a specific data file using the Open function. The expression
passed to the Expr function is evaluated against the current operating state of
GoldMine (usually, the currently displayed record), rather than the state of a specific
work area. For this reason, you should be aware that differences between the return
values could exist for the same expression passed to Read and Expr.

Integrating With GoldMine

60

PARAMETERS

The Expr function takes one parameter—the Xbase expression to be evaluated.
GoldMine supports a subset of the Xbase dialect, so there is substantial flexibility in
the application of this function. Enclose this parameter in quotation marks (“).

When referencing field names within an expression, you should always use an alias;
otherwise, GoldMine assumes CONTACT1 to be the default alias.

RETURN VALUE

The Expr function returns a character string containing the value of the specified
expression. If an error occurs, or the expression could not be evaluated, the Expr
function will return a null string.

EXAMPLE

The following expression will return the number of characters in notes file of the
current contact.

Note that the example below is written in Visual Basic for Applications, and the
DDEInitiate and DDERequest functions are not a part of Visual Basic 6.0. DDE
functionality is performed via the LinkRequest method in a textbox. For more
information, see Establishing a DDE Conversation on page 31.

Sub Main()

 Dim lChannel As Long

 Dim sExpr As String

 Dim sRet As String

 Dim sQ As String

 sQ = Chr(34)

 lChannel = DDEInitiate("GoldMine", "Data")

 sExpr = "Length(Contact1->Notes)"

 sRet = DDERequest(lChannel, "[EXPR(" + sQ + sExpr + sQ + ")]")

 MsgBox ("Notes Length = " + sRet + " characters")

End Sub

Adding Merge Fields to a Form

Syntax [FORMADDFIELDS(<FormNo>,<Fields>)]

The FormAddFields function adds merge fields to a form profile.

PARAMETERS

The FormAddFields function takes two parameters. Enclose each parameter in
quotation marks (“).

The first parameter is the number of the form.

The second parameter is a string that lists fields, macros, and expressions; each item
in the string is separated by a semicolon (;). GoldMine parses the string, checks for
duplication, assigns names to the fields, and then stores the items.

Integrating With GoldMine

 61

EXAMPLE

The following example shows how to export a data file with GoldMine. It uses all of
the Formxxxx functions, such as FORMADDFIELDS, FORMNEWFORM,
FORMQUERYCREATE, FORMCLEARFIELDS, FORMCLOSEFORM, and
FORMGETFIELDNAME.

Note that the example below is written in Visual Basic for Applications, and the
DDEInitiate and DDERequest functions are not a part of Visual Basic 6.0. DDE
functionality is performed via the LinkRequest method in a textbox. For more
information, see Establishing a DDE Conversation on page 31.

Sub Main()
 Dim lChannel As Long
 Dim sRet As String
 Dim sFieldList As String
 Dim sFormNo As String
 Dim sFile As String
 Dim sNumRecs As String
 Dim sMergeCode As String
 Dim sQ As String

 sMergeCode = ""
 sQ = Chr(34)
 'Populate the field list
 sFieldList = "&Contact ; Phone1 ; Contact1->State ;
SUBSTR(Company,1,5)"
 lChannel = DDEInitiate("GoldMine", "Data")
 'Get a new Form Number
 sFormNo = DDERequest(lChannel, "[FormNewFormNo()]")
 'Register the fields
 sRet = DDERequest(lChannel, "[FormAddFields(" + sQ + sFormNo + sQ +
"'" + sQ + sFieldList + sQ + ")]")
 'Display the field names as assigned by GoldMine

MsgBox ("&Contact=" + FieldName(lChannel, sFormNo, "&Contact"))
 MsgBox ("Phone=" + FieldName(lChannel, sFormNo, "Phone1"))
 MsgBox ("Contact1->State=" + FieldName(lChannel, sFormNo,
"Contact1->State"))
 MsgBox ("SUBSTR=" + FieldName(lChannel, sFormNo,
"SUBSTR(Company,1,5)"))

 'Give the output file a name
 sFile = "C:\GMDATA.DBF"
 'Create the file
 sNumRecs = DDERequest(lChannel, "[FormCreateFile(" + sQ + sFormNo +
sQ + "," + sQ + sFile + sQ + "," + sQ + "21" + sQ + ", " + sQ +
sMergeCode + sQ + ")]")
 While DDERequest(lChannel, "[FormQueryCreate(0)]") <> "-1"
 'wait until DBF is created
 Wend
 'Clear the fields since we will not use them again
 sRet = DDERequest(lChannel, "FormClearFields(" + sQ + sFormNo + sQ
+ ")]")
 'Close the file when done
 sRet = DDERequest(lChannel, "FormCloseForm()")
 MsgBox (“Records finished exporting to " + sFile)
End Sub

Integrating With GoldMine

62

Function FieldName(lChannel As Long, sFormNo As String, sField As
String) As String
 Dim sQ As String

 sQ = Chr(34)
 FieldName = DDERequest(lChannel, "[FormGetFieldName(" + sQ + sFormNo
+ sQ + "," + sQ + sField + sQ + ")]")
End Function

Deleting Fields from a Form

Syntax [FORMCLEARFIELDS(<FormNo>)]

The FormClearFields function opens an existing form profile and deletes all
associated fields.

PARAMETERS

The FormClearFields function takes one parameter—the number of the form.
Enclose this parameter in quotation marks (").

RETURN VALUE

The FormClearFields function returns 1 if the profile is open, or 0 if an error occurs.

EXAMPLE

See “Adding Merge Fields to a Form” on page 106.

Closing a Form Profile

Syntax [FORMCLOSEFORM(<FormNo>)]

The FormCloseForm function closes an open form profile.

PARAMETERS

The FormCloseForm function takes one parameter, which is the number of the form.
Enclose this parameter in quotation marks (").

EXAMPLE

See “Adding Merge Fields to a Form” on page 106.

Creating an Xbase File with Registered Fields

Syntax [FORMCREATEFILE(<FormNo>,<FileName>,<WhichRec>,<MergeCode>)]

The FormCreateFile function creates an Xbase (DBF) file with all registered fields.
Any active filter or group that applies to the contact record is taken into account.
FormCreateFile can be used to export data via DDE.

PARAMETERS

The FormCreateFile function takes four parameters. Enclose all parameters in
quotation marks (").

The first parameter is the number of the form.

Integrating With GoldMine

 63

The second parameter is the name of the .DBF file to be created.

The third parameter indicates which records are to be exported. The WhichRec value
is the sum of values for each available listed below.
WhichRec Values

Value Description
1 Primary

2 Secondary

4 All records

8 Forward to last

16 Return control to the calling program immediately after export has started

EXAMPLES OF WHICHREC PARAMETER
Current contact 1
All primary contacts 5 (1+4)
Forward to last of primary and additional contacts 11 (1+2+8)

The fourth parameter is the merge code. If any merge code value(s) are included in
the function, only records with the matching merge code(s) will be included. To
include multiple merge codes, place a space between each individual merge code. If
the fourth parameter is empty, all records are included.

RETURN VALUE

The FORMCREATEFILE function returns the total number of records in the output
.DBF file.

EXAMPLE

See “Adding Merge Fields to a Form” on page 60.

Returning a Field Name for an Expression

Syntax [FORMGETFIELDNAME(<FormNo>,<Field>)]

The FormGetFieldName function returns the field name for an expression, a macro,
or a field.

PARAMETERS

The FormGetFieldName function takes two parameters. Enclose both parameters in
quotation marks (").

The first parameter is the number of the form. The second parameter is the name of
the field, macro, or expression to be associated with the file name.

EXAMPLE

See “Adding Merge Fields to a Form” on page 106.

Integrating With GoldMine

64

Returning a Value for Unattached Fields

Syntax [FORMNEWFORMNO()]

RETURN VALUE

The FormNewFormNo function returns a new, unique FormNo value that can be
used to register fields not attached to a GoldMine form. Enclose this parameter in
quotation marks (").

EXAMPLE

See “Adding Merge Fields to a Form” on page 106.

Counting the Number of Exported Records

Syntax [FORMQUERYCREATE(<FLAGS>)]

The FormQueryCreate function provides status information during an export by
returning the number of records exported during the export process.

PARAMETERS

The FormQueryCreate function takes one optional parameter. Enclose this
parameter in quotation marks (").

The following table lists values of FormQueryCreate parameters.
FormQueryCreate Parameters

Value Description
0 Export in progress (default)

1 Start process

2 Abort process

RETURN VALUE

The FormQueryCreate function returns the number of records created while an
export is in progress, or -1 when the record export process is completed.

EXAMPLE

See “Adding Merge Fields to a Form” on page 106.

Creating a History Record

Syntax [INSHISTORY(<accno>,<rectype>,<ref>,<notes>,<actv>,<rslt>,<user>)]

The InsHistory function is used to create a history record in GoldMine. The
InsHistory function provides a higher level interface for creating these records than
using Open, Append, and Replace.

PARAMETERS

The InsHistory function takes up to seven parameters. All parameters must be
passed in quotation marks (").

Integrating With GoldMine

 65

The first parameter is the account number of the contact record to which the new
history record will be linked.

The second parameter is the record type to create. The following values are available:
InsHistory Valid Values (2nd parameter)

Value Record Type Value Record Type
A Appointment U Unknown

C Phone call CC Call back

D To-do CI Incoming call

E Event CM Returned message

L Form CO Outgoing call

M Sent message MG E-mail message

O Other MI Received e-mail

S Sale MO Sent e-mail

T Next action

The third parameter is the history Reference.

The fourth parameter (optional) is the Notes for the history record.

The fifth parameter (optional) is the Activity Code.

The sixth parameter (optional) is the Result Code.

The seventh parameter is the User. If this parameter is not specified, the User field
defaults to the currently logged user.

RETURN VALUE

The InsHistory function returns the record number (Xbase) or record ID (SQL) of the
new history record if the function was completed successfully. The function returns
0 if a new record could not be appended to the data file.

EXAMPLE

The following example shows how to create a history (incoming call) record for the
current contact.

Note that the example below is written in Visual Basic for Applications, and the
DDEInitiate and DDERequest functions are not a part of Visual Basic 6.0. DDE
functionality is performed via the LinkRequest method in a textbox. For more
information, see “Establishing a DDE Conversation” on page 31.

Sub Main()

 Dim lChannel As Long

 Dim sAccountNo As String

 Dim sRecType As String

 Dim sRef As String

Integrating With GoldMine

66

 Dim sRet As String

 Dim sQ As String

 sQ = Chr(34)

 lChannel = DDEInitiate("GoldMine", "Data")

 sAccountNo = DDERequest(lChannel, "Contact1->AccountNo")

 sRecType = "CI" 'Incoming Call

 sRef = "New History"

 sRet = DDERequest(lChannel, "[InsHistory(" + sQ + sAccountNo +
Chr$(34) + "," + Chr$(34) + sRecType + Chr$(34) + "," + Chr$(34) +
sRef + sQ + ")]")

 If sRet = "0" Then

 StatusBar = "History not Created"

 End If

 DDETerminate (lChannel)

EndSub

Creating or Updating a Document Link

Syntax [LinkDoc(<recno>,<filepath>,<title>,<owner><notes>,<nSync>)]

The LinkDoc function is used to create or update a document link in GoldMine.
Document links allow you to launch directly into an application and load the
application with a document by clicking on the desired document listed in the
contact’s Links tab. GoldMine maintains these links as records in the supplementary
data file. The LinkDoc function provides a higher level interface to these records
than can be obtained by using Open, Append, and Replace.

PARAMETERS

The LinkDoc function takes up to six parameters.

The first parameter is the record number of the link record to be updated. If a new
link record is to be created, pass 0 as the first parameter.

When GoldMine calls the mail merge macro, the record number of the linked document
record is passed as the sixth parameter.

The second parameter is the fully qualified path and filename of the file to link. Keep
in mind that a valid association must exist for the file’s extension if GoldMine is to
automatically launch the file’s application. See “Installing the GoldMine DDE Link”
for information on creating a file association using Windows Explorer. Enclose this
parameter in quotation marks (“).

The third parameter is the document title. Enclose this parameter in quotation
marks (“).

The fourth parameter is the optional document owner. If this field is not passed, the
document owner defaults to the name of the currently logged GoldMine user.

The fifth parameter is optional notes for the linked document record in the Links tab.

Integrating With GoldMine

 67

The sixth parameter defines the remote synchronization status for the linked
document from the values shown in the following table.
NSync Valid Values

Value Action
-1 Uses the GoldMine default as defined by Allow new documents to sync by default in

the Sync tab of the Preferences window.

0 Does not synchronize the newly linked document.

1 Allows the newly linked document to synchronize.

RETURN VALUE

The LinkDoc function returns the new record number (Xbase) or record ID (SQL) if
the function was completed successfully. The function returns any empty string if a
new record could not be appended to the data file, or an existing record could not be
locked for update.

EXAMPLE

The following example prompts the user for a file name and description, then creates
a document link to the current contact.

Note that the example below is written in Visual Basic for Applications, and the
DDEInitiate and DDERequest functions are not a part of Visual Basic 6.0. DDE
functionality is performed via the LinkRequest method in a textbox. For more
information, see “Establishing a DDE Conversation” on page 31.

Sub Main()

 Dim lChannel As Long

 Dim sDocPath As String

 Dim sTitle As String

 Dim sRet As String

 Dim sQ As String

 sQ = Chr$(34)

 lChannel = DDEInitiate("GoldMine", "Data")

 sDocPath = InputBox("Enter Full Path of Document to Link")

 sTitle = InputBox("Enter Title of Link")

 sRet = DDERequest(lChannel, "[LinkDoc(0," + sQ + sDocPath + sQ +
"," + sQ + sTitle + sQ + ")]")

 DDETerminate (lChannel)

End Sub

Displaying a Message Dialog Box

Syntax [MsgBox(<message>,<style>)]

The MsgBox function displays a standard Windows message dialog box.

Integrating With GoldMine

68

PARAMETERS

The MsgBox function accepts two parameters.

The first parameter is the message to display within the dialog box. Enclose this
parameter in quotation marks (").

The second parameter is the optional style of the message box. This value is the sum
of the following options:
MsgBox Style Values (2nd parameter)

Value Meaning
0 Display OK button only

1 Display OK and Cancel buttons

2 Display Abort, Retry, and Ignore buttons

3 Display Yes, No, and Cancel buttons

4 Display Yes and No buttons

5 Display Retry and Cancel buttons

16 Display Stop icon

32 Display Question Mark icon

48 Display Exclamation Mark icon

64 Display Information icon

128 First button is default

256 Second button is default

512 Third button is default

RETURN VALUE

The MsgBox function returns the following values:
MsgBox Return Values

Return Description
1 OK button selected

2 Cancel button selected

3 Abort button selected

4 Retry button selected

5 Ignore button selected

6 Yes button selected

7 No button selected

EXAMPLE

The following example shows how to display a message dialog box in GoldMine and
return the result.

Note that the example below is written in Visual Basic for Applications, and the
DDEInitiate and DDERequest functions are not a part of Visual Basic 6.0. DDE

Integrating With GoldMine

 69

functionality is performed via the LinkRequest method in a textbox. For more
information, see Establishing a DDE Conversation on page 31.

Sub Main()

 Dim lChannel As Long

 Dim sRet As String

 Dim sQ As String

 sQ = Chr(34)

 lChannel = DDEInitiate("GoldMine", "Data")

 sRet = DDERequest(lChannel, "[MsgBox(" + sQ + "Press a Button, Any
Button" + sQ + ", 4)]")

 If ret$ = "6" Then

 MsgBox ("Yes was pressed")

 Else

 MsgBox ("No was pressed")

 End If

 DDETerminate (lChannel)

End Sub

Adding a Merge Form

Syntax [NEWFORM(<apptype>,<filepath>,<title>,<macro>, <templatetype>,<flags>)]

The NewForm function adds a merge template record into the Merge Forms window
in GoldMine. This function is used primarily by the document merge link
installation macro; however, the function can also be used to add additional merge
templates from a user-written application.

PARAMETERS

The NewForm function takes up to six parameters; the first three parameters are
required, and the last three parameters are optional.

The first parameter is the type of document to which the new form record will point.
This value must be a valid Application Identifier, such as Word.Document.6, that
corresponds to an entry in the Registration Database. Enclose this parameter in
quotation marks (").

The second parameter is the fully qualified path and filename of the template file.

The third parameter is the title of the document as it should appear in the Merge
Forms browse window. Enclose this parameter in quotation marks (").

The fourth parameter is the name of an optional DDE function to be called after the
template is loaded by the linked application. If this parameter is not specified, the
default function is MAINMENU. Enclose this parameter in quotation
marks (").

Integrating With GoldMine

70

The fifth parameter is the optional type of template. If this parameter is not specified,
the template type is assumed to be Document. Enclose this parameter in quotation
marks ("). GoldMine accepts the following values for this parameter:
Document Types

Type Description
0 Document

1 Spreadsheet

2 Other

The sixth parameter is a three-character field corresponding to the values of the Link
To Doc, Save History and Allow Hot Link options on the Form Setup dialog box. To set
(check) one of these options, 1 is passed; to reset (uncheck), 0 is passed. Enclose this
parameter in quotation marks (“).
Flag Values

Position Description
0 Link To Doc check box

1 Save History check box

2 Allow Hot Link check box

RETURN VALUE

The NewForm function returns a form number.

EXAMPLE

The following example shows how to create a merge form entry in GoldMine, using
the currently active Word Document.

Note that the example below is written in Visual Basic for Applications, and the
DDEInitiate and DDERequest functions are not a part of Visual Basic 6.0. DDE
functionality is performed via the LinkRequest method in a textbox. For more
information, see Establishing a DDE Conversation on page 31.

Public Sub Main()

 Dim sQ As String

 Dim lChannel As Long

 Dim iResult As Integer

 Dim sDocTitle As String

 Dim sFullName As String

 Dim sAppName As String

 Dim FSDlg As Dialog

 'GoldMine Is Not running.

 SQ = Chr(34)

 If Not (Tasks.Exists("GoldMine")) Then

 MsgBox Prompt:="GoldMine is NOT Running", Buttons:=vbCritical,
Title:="Save As Merge Form"

 GoTo Bye

Integrating With GoldMine

 71

 End If

 lChannel = DDEInitiate("GoldMine", "Data")

 iResult = Dialogs(wdDialogFileSummaryInfo).Show

 If iResult = 0 Then

 GoTo Bye

 End If

 sDocTitle = sQ + Dialogs(wdDialogFileSummaryInfo).Title + sQ

 iResult = Dialogs(wdDialogFileSaveAs).Show

 If iResult = 0 Then

 GoTo Bye

 End If

 ActiveDocument.Save

 sFullName$ = sQ + ActiveDocument.FullName + sQ

 sAppName = sQ + "[GoldMineLink()]" + sQ

 FormNo$ = DDERequest(lChannel, "[NewForm(Word.Document.8," +
sFullName$ + "," + sDocTitle$ + "," + sAppName + ")]")

 ActiveDocument.Saved = False

 ActiveDocument.SaveAs FileName:=sFullName$,
FileFormat:=wdFormatTemplate

 StatusBar = "Document has been saved as a GoldMine Merge Form"

Bye:

 If lChannel Then

 DDETerminate lChannel

 End If

End Sub

Creating a Group

Syntax [NEWGROUP(<ref>,<code>,<user>)]

The NewGroup function is used to create an empty group. This function must be
called prior to adding group members with the NewMember function.

PARAMETERS

The NewGroup parameter takes up to three parameters; the first parameter is
required, the last two are optional.

The first parameter is the Reference for the new group. Enclose this parameter in
quotation marks (“).

The second parameter is the optional sort Code for the group. This parameter must
be passed in quotation marks if it contains any embedded spaces or delimiting
marks.

The third parameter is the optional user name to whose groups list the new group
will be added. If this parameter is not passed, the new group will be added to the
currently logged user’s list of groups. Enclose this parameter in quotation
marks (“).

Integrating With GoldMine

72

RETURN VALUE

The NEWGROUP function returns a value representing the GROUP NUMBER of the
new group. Zero is returned if the group could not be added. The GROUP NUMBER
value is used by the NewMember function to add members to the new group.

EXAMPLE

The following example shows how to create a group called “New Group” and make
the current contact a member of that group.

Note that the example below is written in Visual Basic for Applications, and the
DDEInitiate and DDERequest functions are not a part of Visual Basic 6.0. DDE
functionality is performed via the LinkRequest method in a textbox. For more
information, see Establishing a DDE Conversation on page 31.

Sub Main()

 Dim lChannel As Long

 Dim sGroupNo As String

 Dim sAcountNo As String

 Dim sQ As String

 Dim sRet As String

 sQ = Chr(34)

 lChannel = DDEInitiate("GoldMine", "Data")

 sGroupNo = DDERequest(lChannel, "[NewGroup(" + sQ + "New Group" + sQ
+ "," + sQ + "New" + sQ + ")]")

 If sGroupNo <> “0” Then

 sAccountNo = DDERequest(lChannel, "Contact1->AccountNo")

 sRet = DDERequest(lChannel, "[NewMember(" + sQ + sGroupNo + sQ +
"," + sQ + sAccountNo + sQ + "," + sQ + "New Member" + sQ + "," + sQ
+ "Sort" + sQ + ")]")

 If sRet = "" Then

 StatusBar = "Error Creating New Member"

 Else

 StatusBar = "Group Created and Member Added. "

 End If

 Else

 StatusBar = "Error Creating New Group"

 End If

 DDETerminate (lChannel)

End Sub

Adding a Group Member

Syntax [NEWMEMBER(<groupno>,<accno>,<ref>,<code>)]

The NewMember function is used to add a member to a group created with the
NewGroup function.

Integrating With GoldMine

 73

PARAMETERS

The NewMember function takes up to four parameters; the first two parameters are
required, and the last two are optional.

The first parameter is the GROUP NUMBER of the group to which the member will
be added. This value is returned by the NewGroup function. Enclose this parameter
in quotation marks (").

The second parameter is the account number of the contact record to add to the
group. Enclose this parameter in quotation marks (").

The third parameter is the optional group member Reference. Enclose this parameter
in quotation marks (").

The fourth parameter is the optional group member sort Code. Group members are
ordered alphabetically by the value in this field. Enclose this parameter in quotation
marks (").

EXAMPLE

See “Creating a Group” on page 71.

Creating a Macro

Syntax [PLAYMACRO(<Macro>,<wait>)]

A macro groups together a series of commands, keystrokes, and/or mouse clicks
into a one-step operation. You can create a macro to automate a sequence of tasks
that you perform frequently in GoldMine.

PARAMETERS

The PlayMacro function takes two parameters that identify the macro and assign a
wait state.

The first parameter identifies the macro. Either the number for the currently logged
user or a valid macro filename can be used to identify a macro.

IDENTIFYING A MACRO BY NUMBER

Each user can create up to 100 macros from the GoldMine toolbar. Each macro can be
assigned an optional numeric identification from 800 to 899. For example, you can assign
800 to identify your first macro, 801 to identify your second macro, and so on.

For details about creating a macro from the GoldMine toolbar, see “Customizing the
GoldMine Toolbar” in the online Help.

IDENTIFYING A MACRO BY FILE NAME

You can assign a file name to identify the macro, such as
C:\GOLDMINE\MACROS\JOHN.801.

The second parameter assigns a wait state that determines GoldMine availability to
process another macro or task while the current macro executes. To set GoldMine to
wait for the currently executing macro to finish before starting another task, set the

Integrating With GoldMine

74

parameter to 1. For example, if you are setting up a sequence of macros to run
tutorial lessons, you want GoldMine to wait for each lesson to finish before
executing the next macro that will run the following lesson.

To allow GoldMine to perform background processing, such as indexing, while the
macro(s) execute, set the parameter to 0.

RETURN VALUE

The PlayMacro function returns an integer value based on the wait parameter; that
is, GoldMine availability to process a task in addition to the currently running
macro. If the wait parameter is 0 (GoldMine does not wait for the macro to finish to
process another task), the PlayMacro function will always return 1. If the wait
parameter is 1 (GoldMine will wait for the current macro to finish before processing
another macro or task), the PlayMacro function will return either 0 or 1 under the
following conditions:
PlayMacro Return Values

Return Description
0 Error occurred during macro playback

1 Macro played successfully

EXAMPLE

The following example shows how to play back a macro via DDE.

To prevent unwanted macros from being executed, some parts of this example have
been commented out.

Note that the example below is written in Visual Basic for Applications, and the
DDEInitiate and DDERequest functions are not a part of Visual Basic 6.0. DDE
functionality is performed via the LinkRequest method in a textbox. For more
information, see “Establishing a DDE Conversation” on page 31.

Sub Main()

 Dim lChannel As Long

 Dim sRet As String

 Dim sQ As String

 sQ = Chr(34)

 'un comment the following line to execute

 'lChannel = DDEInitiate("GoldMine", "Data")

 'Play macro 800 for current user
 sRet = DDERequest(lChannel, "[PlayMacro(800,0)]")

 'Play Macro 802 for specified use (BILL)
 sRet = DDERequest(lChannel, "[EXPR(" + sQ +
"C:\GOLDMINE\MACROS\BILL.802" + sQ + ")]")

Integrating With GoldMine

 75

End Sub

You can also play a macro from the command line (DOS prompt). Executing a macro from the
command line can be useful in running functions at night, such as indexing, running an Automated
Process, or synchronizing with remote sites with a transfer set created via macro. You can either
identify a macro by an identification number, like GMW4 /m:801, or by file name like GMW4 /m:c:
\index.801. If necessary, the command line statement can start GoldMine and then, once started,
run the macro.

Optional switches include:

/m: Logs in automatically to GoldMine

/u:[username] Provides the username entry to log in to GoldMine

/p:[password] Provides the password entry to log in to GoldMine

If running the Plus! Pack with Windows, you can run a macro from the System Agent by placing a
command line switch for GoldMine in the Program field of the Schedule a New Program dialog box
that will run a macro. For example, to log in John with his username and password, then run John’s
first macro, place the following macro in the System Agent:

GMW5 /u:john /p:pswd /m:800

Where GMW5/ starts Goldmine, u:john/ is login user John, p:pswd/ enters the password
password, and m:800 runs first macro.

Creating and Sending a Pager Message

Syntax [SENDPAGE(<Message>,<From>,<To>)]

The SendPage function allows you to create and send a message to the pager of a
GoldMine user. The function consists of the following components:

<Message> can consist of any text message that you create with this function to send
to a pager; most pages can accept messages of
70–100 characters.

<From> includes the sender’s name as an optional “signature.”

<To> identifies an optional GoldMine user who will receive the pager message.
Information about the pager must be entered in the Edit|Preferences|Pager tab, such
as ID code or PIN number, telephone number of the pager, and maximum message
size in characters that the pager can accept.

RETURN VALUE

The SendPage function can return one of two values.
SendPage Return Values

Return Description
0 Error occurred during the attempt to send the message to the pager

1 Pager message was transmitted successfully

Integrating With GoldMine

76

EXAMPLE

The following example sends the message “This is a pager message” from John Doe:

Note that the example below is written in Visual Basic for Applications, and the
DDEInitiate and DDERequest functions are not a part of Visual Basic 6.0. DDE
functionality is performed via the LinkRequest method in a textbox. For more
information, see Establishing a DDE Conversation on page 31.

Sub Main()

 Dim lChannel As Long

 Dim sMsg As String

 Dim sFrom As String

 Dim sRet As String

 Dim sQ As String

 sQ = Chr(34)

 lChannel = DDEInitiate("GoldMine", "Data")

 sMsg = "This is a pager message"

 sFrom = "Jon Doe"

sRet = DDERequest(lChannel, "[SendPage(" + sQ + sMsg + sQ + "," + sQ
+ sFrom + sQ + ")]")

End Sub

Displaying a Message in the GoldMine Status Bar

Syntax [StatusMsg(<message>,<delay>)]

The StatusMsg function displays a message in the GoldMine status bar.

PARAMETERS

The StatusMsg function takes two parameters. Enclose each parameter in quotation
marks (").

First parameter is the message.

Second parameter is an optional delay, after which time the message is removed
from the status bar.

EXAMPLE

See “RecNo” on page 42.

Converting TLog Timestamps

Syntax [SyncStamp(<stamp>)]

The SyncStamp function converts a TLog timestamp to a date and time
representation, and from a date and time representation back to the TLog time stamp
format.

Integrating With GoldMine

 77

PARAMETER

The SyncStamp function takes one parameter. Enclose the parameter in quotation
marks (").

RETURN VALUES

When the <stamp> string parameter is exactly 17 characters long, formatted as
Date:Time in form of CCYYMMDD:HH:MM:SS, the return string is in TLog time
stamp format, exactly seven characters long. When the <stamp> parameter is seven
characters long, and formatted as a TLog timestamp, the return string is formatted as
CCYYMMDD:HH:MM:SS. An empty return string indicates an error.

EXAMPLE 1

The following example converts February 1, 1998 at 7:01 p.m. to a TLog time stamp
format.

[SyncStamp("19980201:19:01:30")] returns "+#G><N2"

EXAMPLE 2

The following example converts a TLog time stamp format to the date and time of
February 1, 1998 at 7:01 p.m.

[SyncStamp("+#G><N2")]

returns "19980201:19:01:30"

DDE Macros
To facilitate the use of DDEAUTO fields, GoldMine allows you to select a macro as
the service item. Upon encountering a DDE service item that starts with an
ampersand (&), GoldMine searches an internal table of macro names. If a match is
found, the macro is processed and the result is returned, as if a DDE function or
expression had been used.

Most macros are sensitive to the setting of the RECORDOBJ function’s SETRECORD
subfunction. This DDE function is used primarily to gain access to additional
contacts and other supplementary information. When the SETRECORD type is set to
PRIMARY, the following macros will return the value from the corresponding fields
in the primary information portion of the contact record. When the SETRECORD
type is set to CONTACTS (additional contacts), or another supplementary record
type, the macros will return the value from the corresponding field in the
supplementary file (CONTSUPP.DBF).

The following macros can be used as DDE service items:

Integrating With GoldMine

78

&Address Returns a string containing the values of both &Address1 and
&Address2, separated by a carriage return and line feed character. If
either &Address1 or &Address2 does not contain any data, a single line
of data is returned, without the carriage return and line feed character.
This macro can be used to perform rudimentary blank line suppression
within linked applications that do not support blank address line
suppression internally.
The action of this macro string is similar to the action of the &Address
macro. The &Address2 macro can be used to return an additional contact
address by using the RECORDOBJ SETRECORD subfunction.

&Address1 Returns the first Address field from the active contact record. Typically, this
value will be extracted from the Address1 field in the primary display
portion of the contact record; however, when the RECORDOBJ
SETRECORD subfunction has been used to change the returned record
type to CONTACTS, then GoldMine returns the value from the Address1
field on the additional contact record, if a value is entered. When the
Address1 field on the additional contact record is blank, then the
&Address1 macro returns the value in the Address1 field in the primary
display portion of the contact record. When the RECORDOBJ
SETRECORD type is set to return a record type other than CONTACTS,
the &Address1 macro returns the value in Address1 field in the primary
display portion of the contact record.

&Address2 Returns the second Address field from the active contact record. Typically,
this value will be extracted from the Address2 field in the primary display
portion of the contact record; however, when the RECORDOBJ
SETRECORD subfunction has been used to change the returned record
type to ADDITIONAL, then GoldMine returns the value from the Address2
field on the additional contact record, if an entry exists in the Address2 field
on the additional contact record. When the Address2 field on the additional
contact record is blank, then the &Address2 macro returns the value in the
Address2 field in the primary display portion of the contact record. When
the RECORDOBJ SETRECORD type is set to return a record type other
than PRIMARY or ADDITIONAL, the &Address2 macro returns the value
in the Address2 field of the primary display portion of the contact record.

&BrowseRecNo Xbase: Returns the record number of the last selected record in a browse
window.
SQL: Returns the record ID of the last selected record in a browse window.

&CalRefresh Refreshes the graphical calendar display. Set up GoldMine to run this
macro after adding calendar records using DDE.

&City Returns the City field from the active contact record. The action of this
macro string is similar to the action of &Address1. The &City macro can
be used to return an additional contact city by using the RECORDOBJ
SETRECORD subfunction.

&CityStateZip Returns a format string of text containing the City, State, and Zip fields
from the active contact record. This string is returned in the following format:
City, State Zip
The action of this macro string is similar to the action of &Address1. The
&CityStateZip macro can be used to return an additional contact city,
state, and ZIP Code by using the RECORDOBJ SETRECORD
subfunction.

Integrating With GoldMine

 79

&CommonDir Xbase: Returns the path information for the directory where the contact
sets are located.
SQL: Returns the BDE alias where the contact sets are located.

&Contact Returns a Contact name from the active contact record. Normally, this
value will be extracted from the Contact field in the primary display portion
of the contact record; however, the RECORDOBJ SETRECORD
subfunction can be used to change the returned record type to additional
contact, or another type of supplementary record. When the RECORDOBJ
SETRECORD type is set to return record types other than PRIMARY, the
&Contact macro returns the value in Contact field in CONTSUPP for the
current supplementary record.

&Country Returns the Country field from the active contact record. The action of this
macro string is similar to the action of &Address1. The &Country macro can
be used to return an additional contact country by using the RECORDOBJ
SETRECORD subfunction.

&Dial1 Returns the Phone1 entry from the active contact record. The returned
phone number is formatted for dialing. GoldMine applies the same rules
used to dial the phone via TAPI. If selected, PREDIAL.INI settings are
applied to phone number selection.

&Dial2 Returns the Phone2 entry from the active contact record. For details, see
&Dial1 above.

&Dial3 Returns the Phone3 entry from the active contact record. For details, see
&Dial1 above.

&DialFax Returns the FAX entry from the active contact record. For details, see
&Dial1 above.

&EmailAddress Returns the primary e-mail address for the currently selected contact.

&Fax Returns the fax number as it should be sent to an auto-dialer for automatic
fax transmission.

&Filter Returns the activated filter expression.

&FirstName Returns the first name of the current contact.

&FullAddress Returns a string containing the complete address for the contact record,
composed of values of &Address1, &Address2, &City, &State, and &ZIP.
The action of this macro string is similar to the action of &Address1. The
&FullAddress macro can be used to return an additional contact address by
using the RECORDOBJ SETRECORD subfunction.

Integrating With GoldMine

80

&GetRoTabID Returns the ID of the currently selected tab. Typically, this value will verify
that the correct tab is selected when a user starts a custom application.

The following values are valid:

0 = Summary
1 = Fields
2 = GM+View
3 = Notes
4 = Contacts
5 = Details
6 = Referral
7 = Pending
8 = History
9 = Links
10 = Members
11 = APs/Tracks
12 = Opportunities
13 = Projects
14 = Relationships/Org tree
15 = Cases
16 = HEAT View if installed, else it will go to the first tab
17+ = custom if installed, otherwise the first tab

The following example tests the selection of the Details tab:
ch=DDEInitiate(“GoldMine”, “Data”)
If DDERequest$(Ch, “&GetRoTabID”) <> “6” Then
MsgBox “You must select a detail record first”
End If

&GetRoTabPos Returns the currently selected tab position. Since the tabs can be
rearranged, this method is not always reliable for determining the currently
selected tab. For details, see &GetRoTabID.

&GoldDir Xbase: Returns path information for the directory in which GoldMine is
installed.
SQL: Returns path information for BDE alias in which GoldMine is installed.

&LastFirstName Returns the name of the current contact in the format:
last name, first name

&LicUsers Returns the number of concurrent users allowed to log in to the installed
copy of GoldMine.

&LicUsersAvailable Returns the number of users allowed to log in to the installed copy of
GoldMine license.

Integrating With GoldMine

 81

&NameAddress Returns a string containing the contact’s name, company, and complete
address of the current contact record. Each address line is separated by a
carriage return and line feed, and the entire string is formatted so that the
string can be inserted directly into a merge template. If any of the address
lines on the contact record is empty, that address line will be suppressed.
This macro can be used to perform rudimentary blank line suppression
within linked applications that do not support blank address line
suppression internally.
The action of this macro string is similar to the action of the &ADDRESS
macros, and the &NAMEADDRESS macro can be used to return an
additional contact address by using the RECORDOBJ SETRECORD
subfunction.

&NameTitleAddress Returns a string containing the contact’s name, title, department, company,
and complete address of the current contact record. Each line is separated
by a carriage return and line feed, and the entire string is formatted so that
the string can be inserted directly into a merge template. If any of the lines
on the contact record is empty, that line will be suppressed. This macro can
be used to perform rudimentary blank line suppression within linked
applications that do not support blank address line suppression internally.
The action of this macro string is similar to the action of the &ADDRESS
macros, and the &NAMETITLEADDRESS macro can be used to return an
additional contact address by using the RECORDOBJ SETRECORD
subfunction.

&NewRecID Returns a unique record ID, which can be used when creating new records.

&Notes Returns the Notes from the active contact record. Typically, this value will
be extracted from the Notes field in the primary display portion of the
contact record; however, the RECORDOBJ SETRECORD subfunction can
be used to change the returned record type to additional contact, or another
type of supplementary record. When the RECORDOBJ SETRECORD type
is set to other than PRIMARY, the &TITLE macro returns the value in Notes
field in CONTSUPP for the current supplementary record.

&Phone Returns a telephone number from the selected contact record.
The action of this macro string is similar to the action of the &ADDRESS1.
The &PHONE macro can be used to return an additional contact telephone
number by using the RECORDOBJ SETRECORD subfunction.

Integrating With GoldMine

82

&Profile(s) Two related macros:
&Profile: Returns the first matching profile record for the selected contact.
&Profiles: Returns all profile records for the selected contact.
Both of these macros take optional parameters. Each parameter must be
separated by a period (.). Although GoldMine does not typically pass
parameters with a DDE macro, the structure of &Profiles must be different
for DDE fields in Microsoft Word document templates, which do not take
DDE commands.
The following examples show the syntax for the &Profile(s) macros:

&Profile Example 1

&Profile.ProfileName.Reference.Flags

Retrieves the first profile that matches the ProfileName and Reference.
In both of the above examples, the Reference parameter is optional. If
passed, the Reference parameter acts as a “begin with” condition on the
profile reference. If the Reference parameter is not passed, all ProfileName
profiles are evaluated.
The optional Flags parameter has the following values:
2 Returns the extended profile fields
4 Returns the ProfileName and Reference
The &Profile(s) macro can easily fill in a Word table with the selected
contact’s profile information because tabs separate each field value, and a
CR/LF separates each profile record.

&Profile Example 2

The following example returns the first e-mail address of the contact:
&Profile.E-mail Address

&Profiles Example 1

The following example returns all the computer profiles that begin with the
word notebook:

&Profiles.Computer.Notebook

&Profiles Example 2

The following examples use the Flags parameter to specify the profile fields
to return:

&Profiles.Computer.Notebook
Notebook ThinkPad 770|
Notebook Compaq Elite|
Notebook Dell 1200|

&Profiles.Computer.Notebook.2
Computer|Notebook ThinkPad 770|
Computer|Notebook Compaq Elite|
Computer|Notebook Dell 1200||

&Profiles.Computer.Notebook.4
Computer|Notebook ThinkPad 770|IBM|233Mz|
Computer|Notebook Compaq Elite|Compaq|200mz|
Computer|Notebook Dell 1200|Dell|166mz|

Integrating With GoldMine

 83

&RoTabPage Returns the currently selected tab. Typically, this value will verify that the
correct tab is selected when a user starts a custom application. Values
between 1 and 9 represent tabs in the first row of tabs; for example, 1
represents the Summary tab. Values between 10 and 18 represent tabs in
the second row, and 19–27 represent tabs in the third row.
The following example tests the selection of the fifth (Profiles) tab:

ch=DDEInitiate(“GoldMine”, “Data”)
If DDERequest$(Ch, “&RoTabPage”) <> “5” Then
MsgBox “You must select a profile record
first”
End If

&SerialNo Returns the serial number of the installed GoldMine program.

&SetRoTab# Selects the tab that corresponds to the number (represented by #) in the
active contact record.

The following values are valid:

1 = Summary
2 = Fields
3 = GM+View
4 = Notes
5 = Contacts
6 = Details
7 = Referral
8 = Pending
9 = History
10 = Links
11 = Members
12 = APs/Tracks
13 = Opportunities
14 = Projects
15 = Relationships/Org tree
16 = Cases
17 = HEAT View if installed, else it will go to the first tab
18+ = custom if installed, otherwise the first tab

ch=DDEInitiate(“GoldMine”, “Data”)

DDERequest$(Ch, “&SetRoTab4”)

Displays the Notes tab in the contact record.

&ShutDown Logs out the currently logged user, and quits GoldMine.

&State Returns the State field from the active contact record. The action of this
macro string is similar to the action of the &ADDRESS1. The &STATE
macro can be used to return an additional contact state by using the
RECORDOBJ SETRECORD subfunction.

&SysDir Returns the GoldMine system directory.

&SysInfo Displays system information as returned by Help>About GoldMine>System
Info.

Integrating With GoldMine

84

&Title Returns the Title from the active contact record. Normally, this value will be
extracted from the Title field in the primary display portion of the contact
record; however, the RECORDOBJ SETRECORD subfunction can be
used to change the returned record type to additional contact, or another
type of supplementary record. When the RECORDOBJ SETRECORD type
is set to other than PRIMARY, the &TITLE macro returns the value in Title
field in CONTSUPP for the current supplementary record.

&User_Var Returns the defined field value from all users, a specified user, or the
currently logged user. For details on defining values, see “Defining Field
Values for use with External Applications” in Maintaining GoldMine.
The &User_Var macro allows GoldMine users to store specific data that
can be retrieved later into applications that are linked via DDE with
GoldMine. This macro can be defined in the [user_var] section of both the
GM.INI and the username.INI of GoldMine.
Usage Syntax:
&User_Var.<variable name>.<GoldMine username>
Example:
&User_Var.Territory.Dan
(Where <variable name> is a descriptive name of the macro and
<GoldMine username> assigns a defined value to a specific GoldMine
user.) <GoldMine username> is optional, as GoldMine will assign these
values to the current GoldMine user.

&UserFullName Returns the full name of the currently logged GoldMine user as the name
appears in the FullName field in the Users Master File for the user.

&UserName Returns the login name of the currently logged GoldMine user.

&Version Returns the version number of the installed GoldMine program.

&WebSite Returns http://<Web site> for the active contact.

&ZIP Returns the Zip field from the currently active contact record. The action of
this macro string is similar to the action of the &ADDRESS1. The &ZIP
macro can be used to return an additional contact ZIP Code by using the
RECORDOBJ SETRECORD subfunction. The DDE macro can be used to
reindex or rebuild the database.

DDE Macros for Merge Forms
The following DDE macros are used primarily for creating DDE links to GoldMine
through the Merge Forms function. The values returned by each of these macros are
updated by GoldMine when a Merge Form is launched by selecting Edit, Link, Print
or Fax from the Merge Forms dialog box.

&PARAM1
(filename)

Returns the path and filename of the document template associated with the merge
form selected when Edit, Link, Print, or Fax was selected. This value is obtained
from the Template File field in the merge form’s Form Setting dialog box.

&PARAM2
(action)

Returns a value indicating whether the Edit, Link, Print, or Fax button was selected
to launch linked application.

Integrating With GoldMine

 85

&PARAM2 Parameters
Value Description
1 Edit selected

2 Link selected

3 Print selected

4 Fax selected

&PARAM3
(range)

Returns a value corresponding to the setting of the Record Range options on the
Merge Forms dialog box when the Edit, Link, Print, or Fax button was selected.

&PARAM3 Parameters
Value Description
1 This contact selected

2 All contacts selected

3 Forward to last selected

&PARAM4
(scope)

Returns a value corresponding to the setting of the Primary and Additional check
boxes on the Merge Forms dialog box when the Edit, Link, Print, or Fax button
was selected.

&PARAM4 Parameters
Value Description
1 Primary checked

2 Additional checked

3 Both Primary and Additional checked

&PARAM5
(flags)

Returns a value corresponding to the status of the Link to Doc, Save History,
and/or Allow Hot Link check boxes on the Merge Forms dialog box. In addition,
the returned value determines whether the form was merged as the result of an
Automated Processes action.
Returns a seven-character string. Each position of the string can contain either 0,
indicating the item was not checked (or Automated Processes is not active), or 1,
indicating the item was checked (or Automated Processes is active).

&PARAM5 Parameters
Position Description
1 Link to Doc
2 Save History
3 Allow Hot Link
4 Unused

5 Unused

6 Unused

7 Automated Processes status

Integrating With GoldMine

86

&PARAM6
(LinkDoc
record
number)

Returns a value containing the record number of the last Linked Document
supplementary record created as a result of launching a Merge Form. When you
launch a merge form with Link to Doc selected, GoldMine creates a linked
document record to hold the saved document. This value can be saved and used to
update the linked document record by passing the record number to the LinkDoc
DDE function.

&PARAM7
(contact
record
pointer)

Returns a pointer to a minimized contact record that is created when Print or Fax is
selected on the Merge Forms dialog box, and the Record Range is All Contacts
or Forward to Last. This value can then be passed to the RecordObj function to
further control a document merge from the linked application.

&PARAM8
(merge code
value)

Returns the merge code entered in the Merge code field of the Merge Forms
dialog box.

&PARAM9
(history
record)

Returns the RecNo or RecID of the history record created by GoldMine. This macro
is useful for updating the history record.

Integrating With GoldMine

 87

DDE Macros for the GoldMine License
The following DDE macros return data for the current GoldMine license. The
descriptions for each macro include the corresponding field name from the form that
appears in the Registration tab of the GoldMine Net-Update window. For details on
the Net-Update process, see “Updating your Copy of GoldMine” in the online Help.

&LicInfoLicTo Returns the Organization entry from the registration form.

&LicInfo_Contact Returns the Contact Name entry from the registration form.

&LicInfo_LicEmail Returns the E-mail address entry from the registration form.

&LicInfo_Phone Returns the telephone number entry from the first Phone/Fax field.

&LicInfo_Fax Returns the fax number entry from the second Phone/Fax field.

&LicInfo_Address1 Returns the Address1 entry from the registration form.

&LicInfo_Address2 Returns the Address2 entry from the registration form.

&LicInfo_City Returns the city entry from the first City/State field.

&LicInfo_State Returns the state or province entry from the second City/State field.

&LicInfo_Zip Returns the ZIP Code entry from the first Zip/Country field.

&LicInfo_Country Returns the country entry from the second Zip/Country field.

 89

Using GMXS32.DLL for Database
Access and Sync Log Updates

The GoldMine GMXS32.DLL is a standard dynamic-link library (DLL) that offers
developers efficient methods to access GoldMine databases and update GoldMine
synchronization logs when external applications update GoldMine data. Most
development environments can load GMXS32.DLL. GoldMine does not need to run
to use GMXS32.DLL.

GMXS32.DLL installs into the \WINDOWS\SYSTEM directory automatically with
GoldMine. Therefore, third-party developers do not need to distribute GMXS32.DLL
with their applications.

The actual file name for the API will vary depending on the version of GoldMine.
For versions of GoldMine in the 5.0 ranges, the dll is named GM5S32.DLL. For
versions in the 6.0 ranges, the dll is named GM6S32.DLL

For an in-depth discussion on interfacing with GoldMine, visit the
Public.GoldMine.Programming newsgroup, which you can access directly from the
GoldMine Web site at http://www.frontrange.com.

This document contains the information you need to:

• Load and initialize GMXS32.DLL

• Streamline integration with GoldMine

• Work with DataStream functions

Integrating With GoldMine

90

• Work with low-level data access functions

• Update GoldMine synchronization information when data is changed by
an external application not utilizing the GoldMine API.

Passing Multiple Parameters to a Function
Each Name/Value (NV) set, or container, simply combines a “Name” and a “Value.”
In the following example:
Company=FrontRange Solutions

Company is the Name and FrontRange Solutions is the Value.

Using a set of NV pairs provides an easy mechanism to pass multiple parameters to
a function. The user can populate the NV pairs into a container, then execute a
Business Logic transaction against the container. The transaction adds extra pairs to
the container to return the results.

Since the NV container remains in memory until cleared, it can make several calls
without clearing all the previous values. This capability is useful to call the same
function with only slight changes to the values, such as when a return value of one
call is needed for a subsequent call.

Using the Business Logic methods, a developer can easily read and write GoldMine
data. Previously, integrating with GoldMine required a great familiarity with the
schema and methodology of GoldMine databases. The Business Logic functions
require less direct knowledge and provide a more standardized and secure way to
integrate with GoldMine. Business Logic functions wrap several other low-level calls
to perform common tasks. In addition, the Business Logic functions take user
security restrictions into account when reading and updating GoldMine data.

Comparing Low Level/DDE Methodology to Business
Logic Methodology

We can compare an example flow to a common task using low level/DDE or
Business Logic. In the following example, you can see that Method 2 has a simpler
flow than Method 1.

METHOD 1: UPDATING A CONTACT RECORD USING THE LOW LEVEL FUNCTIONS OR DDE

1. Open the Contact1 database.

2. Set the index tag.

3. Seek the contact record.

4. If not found, then Append a new record.

5. Replace field values.

6. Close the database.

Integrating With GoldMine

 91

METHOD 2: UPDATING A CONTACT RECORD USING THE BUSINESS LOGIC

1. Load an NV Container with the values for the contact record.

2. Execute the WriteContact method.

Loading GMXS32.DLL and Logging In
The following section describes the functions available to load the BDE and log in to
a GoldMine table. For function prototypes and code examples in C++, Visual Basic
and Delphi, see the appendix on page 409.

If using C/C++, note that the GMXS32.DLL functions use the stdcall convention.

Before using any of the functions, you must perform the following steps:

1. GMXS32.DLL must be dynamically loaded in C/C++ (simply declare them in
VB).

2. GMW_LoadAPI function must be called to load the API with the set
parameters for the programmer to work with.

The GMW_UnloadAPI() function must always be called before terminating the
application and freeing the DLL.

The following functions initialize and close the API sessions:

• GMW_LoadAPI: loads set parameters for an API session

• GMW_UnloadAPI: closes the API session

Note: As of GoldMine Version 7.0, the Borland Database Engine is no longer used.
References to BDE in the following sections apply only to integrations
developed in GoldMine Version 6.7 or lower.

For GoldMine Version 6.7 or lower:

The GMW_LoadBDE function must be called to load the BDE and initialize the
database objects. The GMW_UnloadBDE() function must always be called before
terminating the application and freeing the DLL.

The following functions initialize and close the BDE sessions:

• GMW_LoadBDE: loads a BDE session

• GMW_UnloadBDE: closes the BDE session

Setting the SQL Database Login Name and Password
(GoldMine 6.7 or lower only)

This topic pertains to SQL only. GMW_SetSQLUserPass should be called
immediately prior to the GMW_LoadBDE call. GMW_SetSQLUserPass is required
only when accessing SQL tables, and will have no effect on Xbase tables. This
function is not required if using DDE login credentials with versions of GoldMine
beyond 5.70.20222.

Integrating With GoldMine

92

SYNTAX

C/C++ int _stdcall GMW_SetSQLUserPass(char *szUserName, char
*szPassword)

VB Public Declare Function GMW_SetSQLUserPass Lib "gm6s32.dll"
(ByVal strUserName As String, ByVal strPassword As String) As Long

PARAMETERS

The GMW_SetSQLUserPass function takes two parameters:

szUserName: specifies the SQL login name.

szPassword: specifies the SQL login name’s password.

RETURN VALUES

The GMW_SetSQLUserPass function returns the following values:
GMW_SetSQLUserPass Return Values

Return Description

0 Failure

1 Success

EXAMPLE
GMW_SetSQLUserPass("JON", "MyPASSWORD");

Loading an API Session (GoldMine 7.0 or higher)
SYNTAX

C/C++ int GMW_LoadAPI(char *szSysDir, char *szGoldDir, char *szCommonDir,
char *szUser, char *szPassword)

VB
Public Declare Function GMW_LoadAPI Lib "gm6s32.dll" (ByVal strSysDir
As String, ByVal strGoldDir As String, ByVal strCommonDir As String,
ByVal strUser As String, ByVal strPassword As String) As Long

PARAMETERS

The GMW_LoadAPI function takes five parameters.

SzGoldDir: Specifies the location of CAL.DBF.

SzCommonDir: Specifies the location of CONTACT1.DBF.

SzUser: Specifies the GoldMine user name (must be UPPERCASE).
For API version 5.70.20222 and later: You may set this parameter to the value of
DDE_LOGIN_CREDENTIALS to use login credentials returned for the user logged
into a running copy of GoldMine through DDE. For GoldMine 6.7 or higher, you
may also use the UI API equivalent.

SzPassword: Specifies the user’s password (must be UPPERCASE).
For API version 5.70.20222 and later: You may set this to the return string from the

Integrating With GoldMine

 93

GetLoginCredentials DDE command if the User parameter is set to
DDE_Login_Credentials. The credential string is only valid for 30 seconds.

RETURN VALUES

The GMW_LoadAPI function returns the following values:
GMW_LoadBDE Return Values

Return Description
1 Success

0 API already loaded

-1 API failed to load

-2 Cannot find license file

-3 Cannot load license file

-4 Cannot validate the license file username/password

-5 Invalid GoldDir

-6 Invalid CommonDir

-7 Failed to allocate the needed TLS slot

-8 General Failure

-9 No access to specified contact set for this user

NOTES

GMW_LoadAPI must be called before calling any function that accesses databases,
such as GMW_UpdateSyncLog and GMW_ReadImpTLog. GMW_UnloadAPI must
be called before unloading the DLL. GMW_LoadAPI may be called as many times as
necessary. Be sure to match a corresponding GMW_UnloadAPI for every call of
GMW_LoadAPI.

EXAMPLE
GMW_LoadAPI("d:\\GM4", "d:\\GM4", "d:\\GM4\\demo", "JON", “PASS”);

Or

GMW_LoadAPI("d:\\GM4", "d:\\GM4", "d:\\GM4\\demo",
 “*DDE_LOGIN_CREDENTIALS*”, szDDEReturnString);

Loading a BDE Session (GoldMine 6.7 or lower)
SYNTAX

C/C++ int GMW_LoadBDE(char *szSysDir, char *szGoldDir, char *szCommonDir,
char *szUser, char *szPassword)

VB
Public Declare Function GMW_LoadBDE Lib "gm6s32.dll" (ByVal strSysDir
As String, ByVal strGoldDir As String, ByVal strCommonDir As String,
ByVal strUser As String, ByVal strPassword As String) As Long

PARAMETERS

The GMW_LoadBDE function takes five parameters.

Integrating With GoldMine

94

SzGoldDir: Specifies the location of CAL.DBF.

SzCommonDir: Specifies the location of CONTACT1.DBF.

SzUser: Specifies the GoldMine user name (must be UPPERCASE).
For API version 5.70.20222 and later: You may set this parameter to the value of
DDE_LOGIN_CREDENTIALS to use login credentials returned for the user logged
into a running copy of GoldMine through DDE.

SzPassword: Specifies the user’s password (must be UPPERCASE).
For API version 5.70.20222 and later: You may set this to the return string from the
GetLoginCredentials DDE command if the User parameter is set to
DDE_Login_Credentials. The credential string is only valid for 30 seconds.

RETURN VALUES

The GMW_LoadBDE function returns the following values:
GMW_LoadBDE Return Values

Return Description
1 Success

0 BDE already loaded

-1 BDE failed to load

-2 Cannot find license file

-3 Cannot load license file

-4 Cannot validate the license file username/password

-5 Invalid GoldDir

-6 Invalid CommonDir

-7 Failed to allocate the needed TLS slot

-8 General Failure

-9 No access to specified contact set for this user

NOTES

GMW_LoadBDE must be called before calling any function that accesses databases,
such as GMW_UpdateSyncLog and GMW_ReadImpTLog. GMW_UnloadBDE must
be called before unloading the DLL. GMW_LoadBDE may be called as many times
as necessary. Be sure to match a corresponding GMW_UnloadBDE for every call of
GMW_LoadBDE.

EXAMPLE
GMW_LoadBDE("d:\\GM4", "d:\\GM4", "d:\\GM4\\demo", "JON", “PASS”);

Or

GMW_LoadBDE("d:\\GM4", "d:\\GM4", "d:\\GM4\\demo",
 “*DDE_LOGIN_CREDENTIALS*”, szDDEReturnString);

Integrating With GoldMine

 95

Logging in a User
GMW_Login may be used to login a different user than was originally logged in
through GMW_LoadAPI or GMW_LoadBDE.

SYNTAX

C/C++ int GMW_Login(char *szUser, char *szPassword, char *szSQLUser, char
*szSQLPassword)

VB
Public Declare Function GMW_Login Lib "gm6s32.dll" (ByVal strUser As
String, ByVal strPassword As String, Optional ByVal strSQLUser As String,
Optional ByVal strSQLPassword As String) As Long

PARAMETERS

szUser: Specifies the GoldMine user name (must be UPPERCASE).
For API version 5.70.20222 and later: You may set this parameter to the value of
DDE_LOGIN_CREDENTIALS to use login credentials returned for the user logged
into a running copy of GoldMine through DDE.

szPassword: Specifies the user’s password (must be UPPERCASE).
For API version 5.70.20222 and later: You may set this to the return string from the
GetLoginCredentials DDE command if the User parameter is set to
DDE_Login_Credentials. The credential string is only valid for 30 seconds.

szSQLUser: Specifies the user’s SQL login name. Omit if using DDE login
credentials.

szSQLPassword: Specifies the user’s SQL password. Omit if using DDE login
credentials.

RETURN VALUES

The GMW_Login function returns the following values:
GMW_Login Return Values

Return Description

1 Success

0 Failure

-1 User does not have permission to open the current contact set.

EXAMPLE
GMW_Login("JOE", "PASS", "SA", "");

Or

GMW_Login(“*DDE_LOGIN_CREDENTIALS*”, szDDEReturnString);

Closing an API Session (GoldMine 7.0 or higher)
SYNTAX

C/C++ int GMW_UnloadAPI()

Integrating With GoldMine

96

VB Public Declare Function GMW_UnloadAPI Lib "gm6s32.dll" () As
Long

RETURN VALUES

The GMW_UnloadAPI function returns the following values:
GMW_UnloadBDE Return Values

Return Description

0 Failure

1 Success

NOTES

If GMW_LoadAPI is called, GMW_UnloadAPI must be called before unloading the
DLL.

EXAMPLE

GMW_UnloadAPI();

The following functions perform additional functions:

GMW_GetLicenseInfo: Returns GoldMine licensing information

Closing a BDE Session (GoldMine 6.7 or lower)
SYNTAX

C/C++ int GMW_UnloadBDE()

VB Public Declare Function GMW_UnloadBDE Lib "gm6s32.dll" () As
Long

RETURN VALUES

The GMW_UnloadBDE function returns the following values:
GMW_UnloadBDE Return Values

Return Description

0 Failure

1 Success

NOTES

If GMW_LoadBDE is called, GMW_UnloadBDE must be called before unloading the
DLL.

EXAMPLE

GMW_UnloadBDE();

The following functions perform additional functions:

GMW_SetSQLUserPass: Sets the SQL database login name and password

Integrating With GoldMine

 97

GMW_GetLicenseInfo: Returns GoldMine licensing information

Logging in Multiple Users through the API
Some integrated solutions for GoldMine require more than one user logged into
GoldMine. These are usually some type of server application or a Web-based
interface. The following functions enable you to handle these situations.

The first function call you will make will still be the GMW_LoadAPI or
GMW_LoadBDE function. You must enter a valid username to call this function, but
you can leave the password blank. You can also use *DDE_LOGIN_CREDENTIALS*
to call this function. Please see page 92 for more information on the GMW_LoadAPI
or GMW_LoadBDE functions.

Logging In
To log in multiple users, use the GMW_MULogin function. Logging in a user with
this function will use a seat of your GoldMine license.

SYNTAX

C/C++ int __stdcall GMW_MULogin (char* szUser, char* szPassword, char*
szSQLUser, char* szSQLPassword, char* szCommonDir)

VB
Public Declare Function GMW_MULogin Lib "gm6s32.dll" (ByVal strUser
As String, ByVal strPassword As String,ByVal strSQLUser As String, ByVal
strSQLPassword As String, ByVal strCommonDir As String) As Long

PARAMETERS

szUser is the GoldMine login name

szPassword is the GoldMine password

szSQLUser is the username for the MS SQL server

szSQLPassword is the password for the MS SQL server

szCommondir is to set a different, specific contact file directory for this user

RETURN VALUES

The GMW_MULogin function returns the following values:
GMW_MULogin Return Values

Return Description

> 0 The session ID for this user

0 Failed to set TLS value

-1 Failed to load license file

-2 Failed to validate name and password

-3 No more seats available

Integrating With GoldMine

98

Return Description

-4 Unknown general exception

-5 User does not have access to the specified contact set.

Logging Out
To log out a user when multiple users are logged in, use the GMW_MULogout
function. This function will free the license seat previously used by the
GMW_MULogin function.

SYNTAX

C/C++ int __stdcall GMW_MULogout (int nSessionID)

VB Public Declare Function GMW_MULogout Lib "gm6s32.dll" (ByVal
nSessionID As Long) As Long

PARAMETERS

nSessionID is the integer value returned by the GMW_MULogin function

RETURNS

The function will return TRUE if the specified SessionID was valid.

Switching Between Login Sessions
If you are working with more than one login session, it is important to note that the
API functions always work on the last user logged in. The functions do not have a
parameter to specify which session (user) to operate on. In order to switch to a
different login session, use the GMW_MUBeginSession function.

SYNTAX

C/C++ int __stdcall GMW_MUBeginSession (int nSessionID)

VB Public Declare Function GMW_MUBeginSession Lib "gm6s32.dll" (ByVal
nSessionID As Long) As Long

PARAMETERS

nSessionID is the integer value returned by the GMW_MULogin function and
specifies which login session under which you want the API calls to operate.

RETURNS

The function returns the SessionID on success, and 0 on failure.

Special Consideration for Multi-Threaded Applications
There may be an instance when your application will not be able to guarantee that
every data request will go through the same thread that created the session, such as

Integrating With GoldMine

 99

the case with Internet Information Server. If you try to access an API session from a
different thread than the one that created the session, you may encounter exceptions.

To handle these situations, use the GMXTP.DLL. Each of the functions in the
GMXS32.DLL is wrapped through the GMXTP.DLL, so there is no need to load both.
In addition, the above multiple login functions have slightly altered names:

GMW_TP_MULogin
GMW_TP_MULogout
GMW_TP_MUBeginSession

In addition, there is one additional function to be aware of,
GMW_TP_CopySecurityTokentoWorkthread.

SYNTAX

C/C++ GMW_TP_CopySecurityTokentoWorkThread ()

VB Public Declare Sub GMW_TP_CopySecurityTokentoWorkThread lib
“gm6s32.dll” ()

This function ensures that the thread that is attempting access gets the identity of the
working thread instead of the process. This function is especially important when
dealing with IIS Extensions.

Working with Business Logic Functions using the
Name/Value Pair Method

The following section describes the functions available for the programmer to
manipulate Name Value containers, used for accessing the high-level business logic
functions via the GMXS32.DLL. For function prototypes and code examples in C++,
Visual Basic and Delphi, see the appendix on page 409.

For information on which business logic functions are available, and their expected
name/value pairs, see .Business Logic Functions and Name/Value Pairs on Page 263.

NOTES

• These functions require that you are successfully logged into a GoldMine
database using the GMW_LoadAPI or GMW_LoadBDE function.

• You must pass an empty NV container with all calls that do not take any parameters.

Creating an NV Container
GMW_NV_Create creates an NV container. This is the first step in using the
name/value pair containers. This is analogous to creating a structure to store
multiple variables indicating the values you wish to assign to fields in GoldMine.

Integrating With GoldMine

100

SYNTAX

C/C++ HGMNV __stdcall GMW_NV_Create()

VB Public Declare Function GMW_NV_Create Lib "gm6s32.dll" () As Long

EXAMPLE

lGMNV = GMW_NV_Create

RETURN VALUE

Pointer to a new NV container

Creating an NV Container with Copied Values
GMW_NV_CreateCopy creates an NV container and copies the values from an
existing NV container.

SYNTAX

C/C++ HGMNV __stdcall GMW_NV_CreateCopy(HGMNV hgmnv)

VB Public Declare Function GMW_NV_CreateCopy Lib "gm6s32.dll" (ByVal
hgmnv As Long) As Long

where hgmnv represents the pointer to the source NV container.

EXAMPLE

lGMNV2 = GMW_NV_CreateCopy(pGMNV)

RETURN VALUE

Pointer to a new NV container.

Copying Values between NV Containers
GMW_NV_Copy copies the values from one NV container to another.
GMW_NV_Create or GMW_NV_CreateCopy must have previously created both NV
containers.

SYNTAX

C/C++ void _stdcall GMW_NV_Copy (HGMNV hgmnvDestination, HGMNV
hgmnvSource)

VB Public Declare Sub GMW_NV_Copy Lib "gm6s32.dll" (ByVal
hgmnvDestination As Long, ByVal hgmnvSource As Long)

PARAMETERS

hgmnvDestination is the pointer to the destination container.

hgmnvSource is the pointer to the source container.

Integrating With GoldMine

 101

EXAMPLE

GMW_NV_Copy lGMNV2, lGMNV

RETURN VALUE

n/a

Deleting an NV Container
GMW_NV_Delete deletes an NV container and releases its memory. Be sure to call
this for all previously created containers before exiting your application.

SYNTAX

C/C++ void __stdcall GMW_NV_Delete(HGMNV hgmnv)

VB Public Declare Sub GMW_NV_Delete Lib "gm6s32.dll" (ByVal hgmnv As
Long)

where hgmnv is the pointer to the NV container to delete.

EXAMPLE

GMW_NV_Delete lGMNV

RETURN VALUE

n/a

Reading Values from an NV Container
GMW_NV_GetValue reads a value stored in an NV container. If the name does not
exit in the container, the default value is returned. This method is used to read data
out of the container returned from GoldMine. For example, after creating a contact,
you would call GMW_NV_GetValue to read the new Recid or Accountno assigned
to the contact.

SYNTAX

C/C++ const char* __stdcall GMW_NV_GetValue(HGMNV hgmnv, const char*
name, const char* DefaultValue)

VB
Public Declare Function GMW_NV_GetValue Lib "gm6s32.dll" (ByVal
hgmnv As Long, ByVal Name As String, ByVal DefaultValue As String) As
GMWStr

PARAMETERS

hgmnv is the pointer to a valid name value container

Name is the name of the value to return

DefaultValue is the default value if <Name> is null or does not exist.

Integrating With GoldMine

102

EXAMPLE

sValue = GMW_NV_GetValue (lGMNV, ‘Accountno’, ‘(none)’)

RETURN VALUES

The value of the Name is returned. If the Name is null or does not exist, the
DefaultValue value is returned.

Storing NV Pairs in a Container
GMW_NV_SetValue stores a Name/Value pair in the specified container. Use this
function to specify the values that you wish to assign to the GoldMine record
(contact, cal, history, etc). Call this function for each field value you need to assign.

SYNTAX

C/C++ void __stdcall GMW_NV_SetValue(HGMNV hgmnv, const char* name,
const char* value)

VB Public Declare Sub GMW_NV_SetValue Lib "gm6s32.dll" (ByVal hgmnv As
Long, ByVal Name As String, ByVal Value As String)

PARAMETERS

hgmnv is the pointer to a valid name value container.

Name is the name of the value to set.

Value is the value to assign to <Name>.

EXAMPLE

GMW_NV_SetValue lGMNV, ‘Phone1’, ‘(310)555-1212’

RETURN VALUE

n/a

Searching for an NV Pair
GMW_NV_NameExists checks if the specified Name/Value exists within the NV
container.

SYNTAX

C/C++ long __stdcall GMW_NV_NameExists(HGMNV hgmnv, const char* name)

VB Public Declare Function GMW_NV_NameExists Lib "gm6s32.dll" (ByVal
hgmnv As Long, ByVal Name As String) As Long

PARAMETERS

hgmnv is the pointer to a valid name value container.

Name is the name of the value to set.

Integrating With GoldMine

 103

EXAMPLE

iResult = GMW_NV_NameExists (lGMNV, ‘Phone1’)

RETURN VALUES

GMW_NV_NameExists Return Values
Return Description
0 Value does not exist in container

1 Value exists in container

Removing one NV Pair
GMW_NV_EraseName removes a Name/Value pair from the specified container.
This function is useful for removing the Recid name/value pair from a container that
has already been used once to create a new record. To reuse the container using all
of the same name/value pairs, the Recid name/value pair needs to be removed in
order to create another new record.

SYNTAX

C/C++ void __stdcall GMW_NV_EraseName(HGMNV hgmnv, const char* name)

VB Public Declare Sub GMW_NV_EraseName Lib "gm6s32.dll" (ByVal hgmnv
As Long, ByVal Name As String)

PARAMETERS

hgmnv is the pointer to a valid name value container

Name is the name of the value to set

EXAMPLE

GMW_NV_EraseName lGMNV, ‘Phone1’

RETURN VALUE

n/a

Removing all NV Pairs from a Container
GMW_NV_EraseAll removes all Name/Value pairs from the specified container.

SYNTAX

C/C++ void __stdcall GMW_NV_EraseAll(HGMNV hgmnv)

VB Public Declare Sub GMW_NV_EraseAll Lib "gm6s32.dll" (ByVal hgmnv As
Long)

PARAMETER

hgmnv is the pointer to a valid name value container.

Integrating With GoldMine

104

EXAMPLE

GMW_NV_EraseAll lGMNV

RETURN VALUE

n/a

Totaling NV Pairs in a Container
GMW_NV_Count returns the number of Name/Value pairs within the specified
container.

SYNTAX

C/C++ long __stdcall GMW_NV_Count(HGMNV hgmnv)

VB Public Declare Function GMW_NV_Count Lib "gm6s32.dll" (ByVal hgmnv
As Long) As Long

PARAMETER

hgmnv is the pointer to a valid name value container.

EXAMPLE
iCount = GMW_NV_Count lGMNV

RETURN VALUE

Number of NVs within the specified container.

Finding an NV Name
GMW_NV_GetNameFromIndex finds the name of the NV stored at a specific index
within the container. The first item in the container is at index value 1.

SYNTAX

C/C++ const char* __stdcall GMW_NV_GetNameFromIndex(HGMNV hgmnv, long
index))

VB Public Declare Function GMW_NV_GetNameFromIndex Lib "gm6s32.dll"
(ByVal hgmnv As Long, ByVal index As Long) As GMWStr

PARAMETERS

hgmnv is the pointer to a valid name value container

Index is the item number to return.

EXAMPLE
sName = GMW_NV_GetNameFromIndex(lGMNV, 3)

RETURN VALUE

The name stored at <Index> within the container.

Integrating With GoldMine

 105

Finding an NV Value
GMW_NV_GetValueFromIndex finds and returns the value of the NV stored at the
specified index within the container. The first item in the container is stored an index
value 1.

SYNTAX

C/C++ const char* __stdcall GMW_NV_GetValueFromIndex(HGMNV hgmnv, long
index)

VB Public Declare Function GMW_NV_GetValueFromIndex Lib "gm6s32.dll"
(ByVal hgmnv As Long, ByVal index As Long) As GMWStr

PARAMETERS

hgmnv is the pointer to a valid name value container

Index is the item number to return

EXAMPLE

sValue = GMW_NV_GetValueFromIndex(pGMNV, 3)

RETURN VALUE

The value stored at <Index> within the container.

Setting NV Pairs
GMW_NV_SetStr sets one or more Name/Value pairs. This function is used if you
would like to set multiple name/value pairs in a single call.

SYNTAX

C/C++ void __stdcall GMW_NV_SetStr(HGMNV hgmnv, char dlmName, char
dlmVal, const char* pszValueStr)

VB
Public Declare Sub GMW_NV_SetStr Lib "gm6s32.dll" (ByVal hgmnv As
Long, ByVal strDlmName As String, ByVal strDlmVal As String, ByVal
ValueStr As String)

PARAMETERS

hgmnv is the pointer to a valid name value container.

DlmName is the delimiter between the name and its value.*

DlmVal is the delimiter between each NV pairs.*

ValueStr is the string containing the name values.

EXAMPLE
GMW_NV_SetStr lGMNV,'=',';','Company=GoldMine;Key1=Cust'

GMW_NV_SetStr lGMNV,'&','&','Company&GoldMine&Key1&Cust'

* The delimiters may be the same.

Integrating With GoldMine

106

RETURN VALUE

n/a

Executing Business Logic Methods
All of the Business Logic methods are accessed through the GMW_Execute function.
You must be successfully logged into a GoldMine database for this call to work
properly. For details about Business Logic methods, see Chapter 6, “Working with
Business Logic Functions using the Name/Value Pair Method”, on pg 99.

SYNTAX

C/C++ long _stdcall GMW_Execute(const char *szFuncName, HGMNV hgmnv)

VB Public Declare Function GMW_Execute Lib "gm6s32.dll" (ByVal
strFuncName As String, ByVal hgmnv As Any) As Long

PARAMETERS

FuncName is one of the various business logic functions described below.

hgmnv is the pointer to a Name/Value container.

EXAMPLE
GMW_Execute “WriteContact”, lGMNV

RETURN VALUES

GMW_Execute Return Values
Return Description

0 Failure

>0 Success

Working with Multi-Value Name/Value Pairs
Some business logic methods use a special name/value pair that contains multiple
values. In addition, a name/value pair may simply hold a string value, or it may hold
the handle(s) to one or more name/value containers. The lifetime of an embedded NV
value is controlled by its parent. You do not need to call GMW_NV_Delete on it.

The following functions are used to manipulate and read multi-value pairs.

Determining the Type of a Name/Value Pair
The GMW_NV_GetValueType function is used to determine if a name/value pair is
a multi-value pair or a container.

Integrating With GoldMine

 107

GOLDMINE API VERSION: 5.50.10111

SYNTAX

C/C++ long _stdcall GMW_NV_GetValueType(HGMNV hgmnv, const char *name)

VB Public Declare Function GMW_NV_GetValueType Lib "gm6s32.dll" (ByVal
hgmnv As Long, ByVal strName As String) As GMWNVValueType

PARAMETERS

hgmnv is the pointer to a Name/Value container.

Name is the name of the name/value pair for which you want to determine the type.

RETURN VALUES

Possible return values are as follows:
GetValueType Return Values

Value Description

GM_NV_VALUE_TYPE_SINGLE_NV The value is one NV Containers

GMW_NV_VALUE_TYPE_MULTI_NV The value stores multiple NV containers

GMW_NV_VALUE_TYPE_MULTI_STRING The value stores multiple string values

Determining the Position of an NV Container in an NV
Hierarchy

If the value in an NV pair contains another container, the container that holds the
second container is the parent of the second container. When there are no more
parents, or you are at the top level of the hierarchy, the container is considered the
root. The following functions will indicate whether the container is a parent or root,
or return the handle to the root or parent.

GOLDMINE API VERSION: 5.50.10111

SYNTAX

C/C++ BOOL _stdcall GMW_NV_IsRoot(HGMNV hgmnv)

VB Public Declare Function GMW_NV_IsRoot Lib "gm6s32.dll" (ByVal hgmnv
As Long) As Long

Returns TRUE (not zero) if the specified hgmnv is the root.

PARAMETERS

hgmnv is the pointer to a Name/Value container.

EXAMPLE

If(GMW_NV_is Root (hgmnv)) {it’s the root} else {it’s a child}

Integrating With GoldMine

108

SYNTAX

C/C++ HGMNV _stdcall GMW_NV_GetRoot(HGMNV hgmnv)

VB Public Declare Function GMW_NV_GetRoot Lib "gm6s32.dll" (ByVal hgmnv
As Long) As Long

Returns the hgmnv of the root for the specified container. If the root’s hgmnv is
specified, the same hgmnv will be returned.

PARAMETERS

hgmnv is the pointer to a Name/Value container.

EXAMPLE
hRootNV = GMN_NV_GetRoot(hgmnv)

SYNTAX

C/C++ HGMNV _stdcall GMW_NV_GetParent(HGMNV hgmnv)

VB Public Declare Function GMW_NV_GetParent Lib "gm6s32.dll" (ByVal
hgmnv As Long) As Long

Returns the hgmnv of the parent for the specified container. The function returns
NULL if the specified hgmnv has no parent (is the root).

PARAMETERS

hgmnv is the pointer to a Name/Value container.

EXAMPLE
hParentNV = GMW_NV_GetParent(hgmnv)

Getting the Number of Values in a Multi-Value Pair
The GMW_NV_GetMultiValueCount function will return the number of values
included in a multi-value name/value pair.

GOLDMINE API VERSION: 5.50.10111

SYNTAX

C/C++ long __stdcall GMW_NV_GetMultiValueCount(HGMNV hgmnv, const char*
name)

VB Public Declare Function GMW_NV_GetMultiValueCount Lib "gm6s32.dll"
(ByVal hgmnv As Long, ByVal strName As String) As Long

PARAMETERS

hgmnv is the pointer to a Name/Value container.

Name is the name of the name/value pair for which you want to receive the count of
values.

Integrating With GoldMine

 109

EXAMPLE
numberOfValues = GMW_NV_GetMultiValueCount(hgmnv, “POP3_Account”)

Retrieving Containers from an NV Pair
When a value contains one container, the GMW_NV_GetNVValue function is used
to retrieve the hgmnv for that child container.

GOLDMINE API VERSION: 5.50.10111

SYNTAX

C/C++ HGMNV _stdcall GMW_NV_GetNvValue(HGMNV hgmnv, const char* name)

VB Public Declare Function GMW_NV_GetNvValue Lib "gm6s32.dll" (ByVal
hgmnv As Long, ByVal strName As String) As Long

PARAMETERS

hgmnv is the pointer to a Name/Value container.

Name is the name of the name/value pair from which you want to receive the child
container.

EXAMPLE
hSubNV = GMW_NV_GetNvValue(hgmnv, “TheNVName”)

When a value contains multiple containers, the GMW_NV_GetMultiNvValue
function is used to retrieve the hgmnv for the child containers.

SYNTAX

C/C++ HGMNV _stdcall GMW_NV_GetMultiNvValue(HGMNV hgmnv, const char*
name, long position);

VB
Public Declare Function GMW_NV_GetMultiNvValue Lib "gm6s32.dll"
(ByVal hgmnv As Long, ByVal strName As String, ByVal position As Long)
As Long '1 based

PARAMETERS

hgmnv is the pointer to a Name/Value container.

Name is the name of the name/value pair from which you want to receive the child
container.

Position is the nth value you want to retrieve (1 based). If you wanted the tenth
container in the value, then position would be 10.

EXAMPLE
hSubNV = GMW_NV_GtMultiNvValue(hgmnv, “TheNVName”, 10)

Integrating With GoldMine

110

Retrieving the Values in a Multi-Value Pair
The GMW_NV_GetMultiValue function is used to retrieve the values from a multi-
value pair. It is called for each value and the number of the value to retrieve must be
specified. This function is used to retrieve string values. To retrieve NV containers
from the value, use the GMW_NV_GetNvValue function or the
GMW_NV_GetMultiNvValue function.

GOLDMINE API VERSION: 5.50.10111

SYNTAX

C/C++ const char* _stdcall GMW_NV_GetMultiValue(HGMNV hgmnv, const char*
name, long element, const char* defaultValue)

VB
Public Declare Function GMW_NV_GetMultiValue Lib "gm6s32.dll" (ByVal
hgmnv As Long, ByVal strName As String, element As Long, ByVal
strDefaultValue As String) As GMWStr

PARAMETERS

hgmnv is the pointer to a Name/Value container.

Name is the name of the name/value pair for which you want to receive the values
from.

Element is the number of the value to be returned. This is 1 based.

DefaultValue is the default value to return if the element supplied is not found.

EXAMPLE

To return the fifth element:
strFifthElemnt = GMW_NV_GetMultiValue(hgmnv,
“POP3_Account”, 5, “No Account”)

Deleting Values from a Multi-Value Pair
The GMW_NV_EraseName function will delete the entire Multi-Value Pair.

GOLDMINE API VERSION: 5.50.10111

Assigning a Container to a Parent
If you need to populate a container that will be a child container, one approach is to
create the container, fill int with its respective values, and then copy the container
into the value of the NV pair desired.

When the NV pair holds only one container, the GMW_NV_SetNvValue function is
used.

Integrating With GoldMine

 111

GOLDMINE API VERSION: 5.50.10111

SYNTAX

C/C++ void _stdcall GMW_NV_SetNvValue(HGMNV hgmnv, const char* name,
HGMNV hgmnvValue)

VB Public Declare Sub GMW_NV_SetNvValue Lib "gm6s32.dll" (ByVal hgmnv
As Long, ByVal strName As String, ByVal hgmnvValue As Long)

PARAMETERS

hgmnv is the pointer to the parent Name/Value container.

Name is the name of the name/value pair into which you want to copy the child
container.

hgmnvValue is the prepared NV container to copy to the parent container.

EXAMPLE
GMW_NV_SetNvValue hgmnv, “TheNVName”, hChildNV

The GMW_NV_AppendNvValue function will append a copy of the specified child
container to an NV pair value that contains multiple containers.

SYNTAX

C/C++ long _stdcall GMW_NV_AppendNvValue(HGMNV hgmnv, const char*
name, HGMNV hgmnvValue)

VB
Public Declare Function GMW_NV_AppendNvValue Lib "gm6s32.dll"
(ByVal hgmnv As Long, ByVal strName As String, ByVal hgmnvValue As
Long) As Long

PARAMETERS

hgmnv is the pointer to the Name/Value container.

Name is the name of the name/value pair into which you want to copy the child
container.

hgmnvValue is the prepared NV container to copy to the parent container.

EXAMPLE
GMW_NV_AppendNvValue hgmnv, “The NVName”, hChildNV

Creating an Empty Child Container Within the Parent
The two preceding functions took a prepared NV container and copied it to the
parent container. Another (best practice) method would be to allow the API to create
the child container for you, return the hgmnv to that child, and then allow you to fill
it with the appropriate values.

The GMW_NV_SetEmptyNvValue will create a child container for an NV pair and
return the hgmnv for that child. This function is used when the value is to hold only
one child container.

Integrating With GoldMine

112

GOLDMINE API VERSION: 5.50.10111

SYNTAX

C/C++ HGMNV _stdcall GMW_NV_SetEmptyNvValue(HGMNV hgmnv, const char*
name)

VB Public Declare Function GMW_NV_SetEmptyNvValue Lib "gm6s32.dll"
(ByVal hgmnv As Long, ByVal strName As String) As Long

PARAMETERS

hgmnv is the pointer to the parent Name/Value container.

Name is the name of the name/value pair in which you want to create the child
container.

EXAMPLE
hChildNv = GMW_NVSetEmptyNvValue(hgmnv, “TheNVName”)

 ‘now set the values of the child container using the returned HGMNV

When you need to append an empty child container to an NV pair containing
multiple children, use the GMW_NV_AppencdEmptyNvValue function.

SYNTAX

C/C++ HGMNV _stdcall GMW_NV_AppendEmptyNvValue(HGMNV hgmnv, const
char* name)

VB Public Declare Function GMW_NV_AppendEmptyNvValue Lib "gm6s32.dll"
(ByVal hgmnv As Long, ByVal strName As String) As Long

PARAMETERS

hgmnv is the pointer to the parent Name/Value container.

Name is the name of the name/value pair to which you want to append the new
empty child container.

EXAMPLE
hChildNv = GMW_NV_AppendEmptyNvValue(hgmnv, “TheNVName”)

‘now set the values of the child container using the returned HGMNV.

Appending String Values to a Multi-Value Pair
The GMW_NV_AppendValue function will append values to a multi-value pair.

GOLDMINE API VERSION: 5.50.10111

SYNTAX

C/C++ long _stdcall GMW_NV_AppendValue(HGMNV hgmnv, const char* name,
const char* value)

VB
Public Declare Function GMW_NV_AppendValue Lib "gm6s32.dll" (ByVal
hgmnv As Long, ByVal strName As String, ByVal strValue As String) As
Long

Integrating With GoldMine

 113

PARAMETERS

hgmnv is the pointer to a Name/Value container.

Name is the name of the name/value pair for which you want to receive the count of
values.

Value is the value to be appended to the end of the list of values.

EXAMPLE

To set five (5) values for the POP3_Account value:
For i = 1 To 5
 GMW_NV_Append hgmnv, “POP3_Account”, i

Next i

Low-level Data Access & Manipulation
The following sections describe additional functions in the GMXS32.DLL that allow
data reading and updating via low-level methods. Use of the following functions
requires in-depth knowledge of the GoldMine data structures and business rules.
They are useful for accessing and writing data that is not accessible via the high-level
business logic functions.

Reading Security and Rights for a DLL User
The GMW_UserAccess function retrieves specific permission information for the
logged-in user.

GOLDMINE API VERSION: 5.00.041

SYNTAX

C/C++ int _stdcall GMW_UserAccess(long iOption)

VB Public Declare Function GMW_UserAccess lib “gm6s32.dll” (ByVal iOption
as long) as Integer

PARAMETERS

GMW_UserAccess takes one parameter, iOption, which is a value for the types of
rights settings you wish to query.
iOption values

Value Rights
100 Master Rights

101 Access to other user’s calendar

102 Access to other user’s history

103 Access to other user’s sales

104 Access to other user’s reports

105 Access to other user’s merge forms

Integrating With GoldMine

114

Value Rights
106 Access to other user’s filters

107 Access to other user’s groups

108 Access to other user’s links

111 Right to create a record

112 Right to edit a record

113 Right to delete a record

114 Right to change record owner

115 Right to field views

116 Right to schedule automated processes

118 Right to SQL Query

119 Right to NetUpdate

124 Right to build groups

RETURN VALUES

The GMW_UserAccess function returns 1 if the user has the queried rights.

Using GMW_CalAccess, you can query whether the user logged in via the DLL has
rights to read/write a CAL record.

SYNTAX

C/C++
int _stdcall GMW_CalAccess(char *szRecType, char *szUserID, char
*szNumber1)

VB Public Declare Function GMW_CalAccess lib “gm6s32.dll” (ByVal sRectype
as String, ByVal sUserID as String, ByVal sNumber1 as String) as Integer

PARAMETERS

szRecType is the RecType of the record.

szUserID is the UserID of the record.

szNumber1 is the Number1 value of the record.

RETURN VALUES

The GMW_CalAccess function returns 1 if the user has rights to read/write.

Using GMW_HistAccess, you can query if the user logged in via the DLL has rights
to read/write a CONTHIST record.

SYNTAX

C/C++ int _stdcall GMW_HistAccess(char *szRecType, char *szUserID)

VB Public Declare Function GMW_HistAccess Lib "gm5s32.dll" (ByVal
szRecType As String, ByVal szUserID As String) As Integer

Integrating With GoldMine

 115

PARAMETERS

szRecType is the RecType of the record.

szUserID is the UserID of the record.

RETURN VALUES

The GMW_HistAccess function returns 1 if the user has rights to read/write.

Returning GoldMine Licensing Information
GOLDMINE API VERSION: 5.00.041

SYNTAX

C/C++ int_stdcall GMW_GetLicenseInfo(GMW_LicInfo *pLic)

VB Public Declare Function GMW_GetLicenseInfo Lib "gm6s32.dll" (LicInfo As
GMW_LicInfo) As Long

PARAMETERS

GMW_GetLicenseInfo takes one parameter pLic, which is a pointer to a client
allocated GMW_LicInfo structure.

RETURN VALUES

The GMW_GetLicenseInfo function returns the following values:
GMW_GetLicenseInfo Return Values

Return Description
0 Failure

1 Success

NOTES

The GMW_LicInfo structure includes the following items:
GMW_GetLicenseInfo Structure

Type/Size Name Description
char / 60 Licensee Licensee name

char / 40 LicNo Master serial number

char / 20 SiteName Undocked site name

long integer LicUsers; Licensed users

long integer SQLUsers; Licensed SQL users

long integer GSSites; License GoldSync sites

long integer isDemo; Is demo install? 1=True

long integer isServerLic; Is primary ('D' or 'E') license? 1=True

long integer isRemoteLic; Is remote (‘U’ or ‘S’) license? 1=True

long integer isUSALicense; Is USA license? 1=True

Integrating With GoldMine

116

Type/Size Name Description
long integer DLLVersion DLL Version number

long integer Reserved1 Reserved

long integer Reserved2 Reserved

char / 100 sReserved Reserved

EXAMPLE
GMW_LicInfo oLic;

GMW_GetLicenseInfo(&oLic;

Returning Calendar Data
The ReadSchedule call returns all calendar data for a given RecID. You can also
make the ReadSchedule call through the XML API.

SYNTAX

C/C++
pnv = (GMWnv*)GMW_NV_CreateCls();
pnv->Set("RecID", "SOMEVALIDRECID");
GMW_NV_Execute("ReadSchedule", pnv);

Retrieving Data with DataStream
DataStream returns the data of ordered records from any GoldMine table using the
most efficient method available. The caller can specify:

• Fields and expressions to return

• Range of records to return

• Optional filter to apply to the data set

DataStream SQL query capabilities are very fast on SQL databases.

The DataStream method allows for many useful applications. One such group of
applications would merge HTML templates with the data returned by GoldMine
DataStream to publish the contents of GoldMine data on the Internet. Web pages can
be created to display GoldMine data requested by a visitor. Based on visitor
selections, a company could dynamically present a variety of HTML pages,
including dealer addresses in a particular city, financial numbers stored in Contact2,
and even seating availability at upcoming conferences. With a fast Internet
connection and a strong SQL server, the GoldMine client could respond
simultaneously to dozens of requests.

Advantages of Using DataStream
GoldMine DataStream is absolutely the fastest way to read data from GoldMine
tables. Used correctly, DataStream will return the data faster than most development
environments would directly. DataStream offers the following advantages:

Integrating With GoldMine

 117

• Efficiency: DataStream issues a single, most efficient SQL query or Xbase
seek to retrieve records from the back-end database to the local client. On
SQL databases, requests of a few hundred records could be sent from the
server to the client with a single network transaction, greatly minimizing
network traffic.

• Speed: All fields and expressions are parsed initially by
GMW_DS_Range() and GMW_DS_Query(), and then quickly evaluated
against each record in GMW_DS_Fetch. Other DDE methods (and
development environments) require that each field be parsed and
evaluated each time its data is read. This makes a big difference when
reading hundreds or thousands of records.

• Simplicity: Only three function calls are required to read all the data.
Using traditional record-by-record querying would require one call for
each field of each record (reading 10 fields from 50 records would require
500 function calls).

• Results: All the work to gather and format the data is done in C++, which
is the fastest way to fly. The caller needs only to parse the resulting
packet string.

DataStream Record Selection
The following DataStream functions are listed in the order in which they must be
called.

GMW_DS_Range(): Opens a ranged cursor

GMW_DS_Query(): Opens an SQL query cursor

GMW_DS_Fetch(): Fetches records

GMW_DS_Close(): Closes cursor

Either the GMW_DS_Range() function or the GMW_DS_Query() function must be
called first to request the data. These functions return the integer handle, iHandle,
which must be passed to the GMW_DS_Fetch() and GMW_DS_Close() functions.

You must use either GMW_DS_Range() or GMW_DS_Query()—you cannot use
both. The GMW_DS_Range and GMW_DS_Query functions execute equally fast on
SQL and FireBird databases. GMW_DS_Range executes much faster on Xbase tables
than does GMW_DS_Query.

GMW_DS_Range

SYNTAX

C/C++ long GMW_DS_Range(char *szTable, char *szTag, char *szTopLimit, char
*szBotLimit, char *szFields, char *szFilter, char *szFDlm, char *szRDlm);

Integrating With GoldMine

118

VB
Public Declare Function GMW_DS_Range Lib "gm6s32.dll" (ByVal strTable
As String, ByVal strTag As String, ByVal strTopLimit As String, ByVal
strBotLimit As String, ByVal strFields As String, ByVal strFilter As String,
ByVal strFDlm As String, ByVal strRDlm As String) As Long

GMW_DS_Range returns a range of records based on an index.

PARAMETERS

The following parameters are required:

szTable specifies the table name (such as “Contact1”) or the table ID.

szTag designates the tag that corresponds to the index file.

szTopLimit specifies the top limit of the range. (Must conform to the index
expression.)

szBotLimit specifies the bottom limit of the range. (Must conform to the index
expression.)

szFields specifies the requested fields and expression to return—see
“GMW_DS_Range Field Selection” on the following page.

The following parameters are optional:

szFilter designates an optional Xbase filter expression.

szFDlm specifies the field delimiter (default: carriage return).

szRDlm specifies the record delimiter (default: line feed).

RETURN VALUES

The GMW_DS_Range function returns the following values:
GMW_DS_Range Return Values

Return Description
0 Failure

1–20 Success (handle)

GMW_DS_RANGE FIELD SELECTION

The szFields parameter passed to GMW_DS_Range should consist of the field names
and Xbase expressions to evaluate against each record in the data set. Each field
must be terminated with a semicolon (;). Xbase expressions must be prefixed with an
ampersand (&), and terminated with a semicolon. For example, the following
commands request the first 100 cities from the Lookup file, including the city name
and record number (RecID under SQL):

ih1 = GMW_DS_Range("lookup", "lookup", "CITY", "CITYZ", "Entry;
&RecNo();")
r1 = GMW_DS_Fetch(ih1, szBuf, iBufSize, 100)
r2 = GMW_DS_Close(ih1)

Integrating With GoldMine

 119

The following commands request the first 10 profiles of the current contact record,
followed by a request for the next 50 profiles:

ih1 = GMW_DS_Range("contsupp","contspfd", sAccNo+"P", sAccNo+"P",
"Contact;ContSupRef;")
r1 = GMW_DS_Fetch(ih1, szBuf, iBufSize, 10)
r1 = GMW_DS_Fetch(ih1, szBuf, iBufSize, 50)
r1 = GMW_DS_Close(ih1)

GMW_DS_Query

SYNTAX

C/C++ long GMW_DS_Query(char *szSQL, char *szFilter, char *szFDlm, char
*szRDlm);

VB
Public Declare Function GMW_DS_Query Lib "gm6s32.dll" (ByVal strSQL
As String, Optional ByVal strFilter As String, Optional ByVal strFDlm As
String, Optional ByVal strRDlm As String) As Long

This function is very fast on SQL databases.

PARAMETERS

szSQL query sends the query for evaluation on the server. The SQL query can join
multiple tables and return any number of fields.

Optional parameter szFilter specifies a Boolean Xbase filter expression to apply to
the data set (even on SQL tables), similar to the DDE SETFILTER command.

Optional parameter szFDlm overrides the return packet’s default field delimiter of
CR (carriage return).

Optional parameter szRDlm overrides the return packet’s default record delimiter of
LF (line feed).

RETURN VALUES

The GMW_DS_Query function returns the following values:
GMW_DS_QueryReturn Values

Return Description
0 Failure

-1 Invalid Query/Timeout

1–20 Success (handle)

GMW_DS_Fetch

SYNTAX
C/C++ long GMW_DS_Fetch(long iHandle, char *szBuf, int iBufSize,

int nGetRecs);
VB Public Declare Function GMW_DS_Fetch Lib "gm6s32.dll" (ByVal iHandle

As Long, ByVal strbuf As String, ByVal iBufSize As Long, ByVal nGetRecs
As Long) As Long

Integrating With GoldMine

120

GMW_DS_Fetch returns a single packet string containing the requested data from all
records processed by the current “fetch” command, as specified by the nGetRecs
parameter. iHandle must be the value returned from GMW_DS_Range() or
GMW_DS_Query().For details about the packet format, see “GMW_DS_Fetch Return
Packet” below.

GMW_DS_FETCH RETURN PACKET

GMW_DS_Fetch returns a single packet string containing the data from all requested
records. The packet includes a header record, followed by one record for each record
evaluated by “fetch.” Within each record in the packet, the fields are separated by a
field delimiter specified in GMW_DS_Range or GMW_DS_Query. By default, the field
delimiter is the carriage return character (13 or 0x0D).

The records in the packet are separated by the record delimiter. By default, the
record delimiter is the line feed character by default (10 or 0x0A).

These delimiters are convenient when the requested data does not contain notes
from blob fields. You can pass 0 for szFDlm, szRDlm to use the default delimiters.
When requesting notes, override the default delimiters by passing other delimiter
values to GMW_DS_Range() and GMW_DS_Query() . For packets with notes, good
delimiters are the ASCII characters 1 and 2.

The City Lookup example from above might return a packet of data similar to:
3000-0004

Boston|23

London|393

Los Angeles|633

New York|29

The packet header record consists of two sections:

First byte can be 0, 3, or 4:

0 indicates that more records are available, which could be fetched with another
GMW_DS_Fetch call

3 indicates the end-of-file (EOF)

4 indicates the beginning-of-file (BOF)

Number following the dash indicates the total number of data records contained in
the packet.

DataStream takes about as much time to read three records as to read 30. For best
performance, adjust the number of records requested by GMW_DS_Fetch to return
8K–32K packets.

The calling application must allocate the memory for a large enough packet buffer,
and pass that memory buffer to GMW_DS_Fetch. When the number of records
cannot be estimated to allocate a packet buffer, GMW_DS_Fetch can be called twice,
once to fetch the data and return a buffer size, and a second time to retrieve the data
into the buffer. When GMW_DS_Fetch is first called to get the buffer size, the szBuf
and iBufSize parameters must both be 0. The nGetRecs parameter must indicate the

Integrating With GoldMine

 121

number of records to fetch. When GMW_DS_Fetch is then called to retrieve the data
that has been fetched by the first call, the nGetRecs parameter must be 0.

Note: If the return DataStream is too large for the specified buffer size,
GMW_DS_Fetch returns a value of -5. When the buffer in increased to an adequate
size, GMW_DS_Fetch will return the data in a DataStream. This behavior prevents
the dropping of data due to undersized buffers.

GMW_DS_Close

SYNTAX

C/C++ long GMW_DS_Close(long iHandle)

VB Public Declare Function GMW_DS_Close Lib "gm6s32.dll" (ByVal iHandle As
Long) As Long

GMW_DS_Close must be called when the operation is complete. Unclosed data
streams will leak memory and leave the database connections needlessly open.
Passing an iHandle of 0 closes all open DataStream objects.

Accessing Low-Level Data Using Work Areas
The GoldMine GMXS32.DLL provides a complete set of functions that allow
low-level access to the database tables. Using these functions, you can:

• Open particular data files

• Seek the values of the fields in the records in the data files

• Append records to the tables

• Delete records

• Replace data in the records

Database applications that need varied access to GoldMine data typically use this
suite of functions. To work successfully, these functions rely on a work area
parameter. Using this parameter, you can open multiple data files concurrently and
manipulate each file independently by referencing the file by work area. These functions
also maintain synchronization information, which is stored in the TLogs.

GMXS32.DLL offers the low-level access functions that are listed in the following
table.
GMXS32.DLL Low-Level Access Functions

Function Name Description
Opening and Closing Databases
GMW_DB_Open Opens one GoldMine data file for processing by another application

GMW_DB_Close Releases a previously OPENed file when processing is complete

GMW_DB_IsSQL In GM 7.0, Determines whether the table is MSSQL (1) or Other (0). Use the
getDBEngineType function to retrieve additional DB engine information.

Integrating With GoldMine

122

Function Name Description
Creating and Deleting Records
GMW_DB_Append Adds a new, empty record to a GoldMine data file

GMW_DB_Delete Deletes the current record in the specified work area.

Reading and Writing Data
GMW_DB_Read Queries a data file for the value of a field

GMW_DB_RecNo Determines either current record number position (Xbase), or the
record ID (SQL)

GMW_DB_Replace Changes the value in a particular field in one GoldMine data file

GMW_DB_Unlock Unlocks a record previously locked by a call to either GMW_DB_Append or
GMW_DB_Replace

Limiting Scope of Data
GMW_DB_Filter Limits access to data in a GoldMine database by creating a subset of records

based on expression criteria

GMW_DB_Range Activates the index in a table, and sets a range of values to limit the scope of
data that GoldMine will search

Searching for Data

GMW_DB_Search Performs a sequential search on a file

GMW_DB_Seek Positions to the first record matching the seek value

GMW_DB_SetOrder Sets the current index tag on the table

Navigating the
Database

GMW_DB_Move Positions the record pointer to a particular record in a data file

GMW_DB_Goto Positions to a specific record in the table

GMW_DB_Top Positions to the first record in the table

GMW_DB_Skip Positions to the next or prior record in the table

GMW_DB_Bottom Positions to the last record in the table

GMXS32.DLL Low-Level Access Functions
Function Name Description

GMW_DB_QuickSeek Wraps several DLL functions to perform a Seek based on an index

GMW_DB_QuickRead Wraps several DLL function to perform a Read

GMW_DB_QuickReplace Wraps several DLL functions to perform a Replace

Detailed descriptions of each database access function appear on the following
pages. Some of the following functions refer to table names, field names, and index
tags. For details, see “Xbase Database Structures” on page 377 or SQL Database
Structures” on page 393.

Integrating With GoldMine

 123

Opening a Data File
GMW_DB_Open opens one GoldMine data file for processing by another
application.

SYNTAX

C/C++ long GMW_DB_Open(char *szTablename);

VB Public Declare Function GMW_DB_Open Lib "gm6s32.dll" (ByVal
strTableName As String) As Long

PARAMETER

The GMW_DB_Open function takes only szTableName, which is the name of the
table to be opened.

RETURN VALUES

The GMW_DB_Open function returns the following values:
GMW_DB_Open Return Values

Return Description
0 Error occurred

>0 Work area handle for table

Closing a Data File
GMW_DB_Close releases a previously OPENed file when processing is complete.
All previously opened files must be properly closed—failure to do so can result in
database errors.

SYNTAX

C/C++ long GMW_DB_Close(long pArea);

VB Public Declare Function GMW_DB_Close Lib "gm6s32.dll" (ByVal lArea As
Long) As Long

PARAMETERS

The GMW_DB_Close function takes only pArea, which is the work area handle of
the file opened by the GMW_DB_Open function.

RETURN VALUES

The GMW_DB_Close function returns the following values:
GMW_DB_Close Return Values

Return Description
0 Error occurred

1 Table properly closed

Integrating With GoldMine

124

Checking for an SQL Table
GMW_DB_IsSQL is used to determine if the table is MSSQL (1) or Other (0). Use the
getDBEngineType function to retrieve more detailed DB engine information.

SYNTAX

C/C++ long GMW_DB_IsSql(long pArea);

VB Public Declare Function GMW_DB_IsSQL Lib "gm6s32.dll" (ByVal lArea As
Long) As Long

PARAMETER

The GMW_DB_IsSQL function takes only pArea, which is the work area handle of
the file opened by the GMW_DB_Open function.

RETURN VALUES

The GMW_DB_IsSQL function returns the following values in GoldMine 7.0:
GMW_DB_IsSQL Return Values

Return Description
0 Table is not MSSQL

1 Table is MSSQL

Adding a Record
GMW_DB_Append adds an empty record to a GoldMine data file.

SYNTAX

C/C++ long GMW_DB_Append(long pArea, char* szRecID);

VB Public Declare Function GMW_DB_Append Lib "gm6s32.dll" (ByVal lArea
As Long, ByVal strRecID As String) As Long

Before using GMW_DB_Append, you must open a data file using the
GMW_DB_Open function. After executing the GMW_DB_Append function, the
record pointer is positioned at the new empty record, and the record is locked and
ready to accept field replacements.

When a CONTACT1 record is appended, GoldMine automatically fills in the new
record with the appropriate ACCOUNTNO and CREATEBY values. For all other
records, you must replace the ACCOUNTNO field with the value from the
CONTACT1 record with which the new record is to be linked. For records that
require remote synchronization initialization, GoldMine will automatically fill in the
value of the RECID field when these records are appended.

PARAMETERS

pArea is the work area handle of the file opened by the GMW_DB_Open function.

szRecID specifies the size of the character buffer to accept the return value. The
szRecID buffer must be at least 20 characters.

Integrating With GoldMine

 125

RETURN VALUE

Xbase: APPEND function returns the record number of the new record, or 0 if the
file could not be locked.

SQL and FireBird: APPEND function returns the RECID of the new record in the
szRecID parameter.

Deleting the Current Record
GMW_DB_Delete deletes the current record in the specified work area and moves
the record pointer to the next record.

For records that require remote synchronization initialization, GoldMine will
automatically maintain the TLog entry.

SYNTAX

C/C++ long GMW_DB_Delete(long pArea);

VB Public Declare Function GMW_DB_Delete Lib "gm6s32.dll" (ByVal lArea As
Long) As Long

PARAMETER

The GMW_DB_Delete function takes only pArea, which is the work area handle of
the file opened by the GMW_DB_Open function.

RETURN VALUES

The GMW_DB_Delete function returns the following values:
GMW_DB_Delete Return Values

Return Description
0 Error occurred

1 Record deleted

Querying for a Field Value
GMW_DB_Read queries a data file for the value of a field.

SYNTAX

C/C++ long GMW_DB_Read(long pArea, char *szField, char *szBuf, int iBufSize);

VB
Public Declare Function GMW_DB_Read Lib "gm6s32.dll" (ByVal lArea As
Long, ByVal strField As String, ByVal strbuf As String, ByVal lBufSize As
Long) As Long

PARAMETERS

pArea is the work area handle of the file opened by the GMW_DB_Open function.

szField is the name of the field to read within the table.

szBuf is the buffer in which the function will return the results.

iBufSize specifies the size of the buffer.

Integrating With GoldMine

126

GMW_DB_Range Return Values
Return Description
0 Error occurred

1 Success

Checking the Current Record Number or Record ID
GMW_DB_RecNo is used to determine either current record number position
(Xbase) or the record ID (SQL and FireBird).

SYNTAX

C/C++ long GMW_DB_RecNo(long pArea, char *szRecID);

VB Public Declare Function GMW_DB_RecNo Lib "gm6s32.dll" (ByVal lArea As
Long, ByVal strRecID As String) As Long

PARAMETERS

pArea is the work area handle of the file opened by the GMW_DB_Open function.

SzRecID is a character string that accepts the return value of RecNo (Xbase) or RecID
(SQL).

RETURN VALUE

Xbase: Returns the current record number

SQL: Returns the current RecID

CHANGING A FIELD VALUE

GMW_DB_Replace changes the value in a particular field in one GoldMine data file.

For records that require remote synchronization initialization, GoldMine will
automatically maintain the TLog entry.

SYNTAX

C/C++ long GMW_DB_Replace(long pArea, char *szField, char *szData, int
iAddTo);

VB
Public Declare Function GMW_DB_Replace Lib "gm6s32.dll" (ByVal lArea
As Long, ByVal strField As String, ByVal strData As String, ByVal iAddTo
As Long) As Long

PARAMETERS

pArea is the work area handle of the file opened by the GMW_DB_Open function.

szField specifies the name of the field to be replaced.

szData specifies the data to be placed in the field.

iAddTo indicates if the data is to be appended to the existing data. A value of 1 will
append the data. A value of 0 will overwrite the data.

Integrating With GoldMine

 127

RETURN VALUES

The GMW_DB_Replace function returns the following values:
GMW_DB_Replace Return Values

Return Description
0 Error occurred

1 Field was successfully replaced

Unlocking a Record
GMW_DB_Unlock unlocks a record previously locked by a call to either
GMW_DB_Append or GMW_DB_Replace.

SYNTAX

C/C++ long GMW_DB_Unlock(long pArea);

VB Public Declare Function GMW_DB_Unlock Lib "gm6s32.dll" (ByVal lArea
As Long) As Long

PARAMETER

The GMW_DB_Unlock function takes only pArea, which is the work area handle of
the file opened by the GMW_DB_Open function.

RETURN VALUES

The GMW_DB_Unlock function returns the following values:
GMW_DB_Unlock Return Values

Return Description
0 Error occurred

1 Success

Creating a Subset of Records
GMW_DB_Filter limits access to data in a GoldMine database by creating a subset of
records based on expression criteria. If successfully called, all other functions (Top,
Bottom, Skip, and so on) will respect the filter.

SYNTAX

C/C++ long GMW_DB_Filter(long pArea, char *szFilterExpr);

VB Public Declare Function GMW_DB_Filter Lib "gm6s32.dll" (ByVal lArea As
Long, ByVal strFilterExpr As String) As Long

PARAMETERS

pArea is the work area handle of the file opened by the GMW_DB_Open function.

szFilterExpr is the valid Xbase expression. To remove the filter, send an empty string
as the second parameter.

Integrating With GoldMine

128

RETURN VALUES

The GMW_DB_Filter function returns the following values:
GMW_DB_Filter Return Values

Return Description
0 Error occurred

1 Success

Limiting Search Scope
GMW_DB_Range activates the index in a table and sets a range of values to
limit the scope of data that GoldMine will search. This function is faster than
GMW_DB_Filter.

The Min and Max values must be formatted the same as the selected index tag’s
expression.

If successfully called, all other functions (Top, Bottom, Skip, etc.) will respect the
range.

SYNTAX

C/C++ long GMW_DB_Range(long pArea, char *szMin, char *szMax, char *szTag);

VB
Public Declare Function GMW_DB_Range Lib "gm6s32.dll" (ByVal lArea As
Long, ByVal strMin As String, ByVal strMax As String, ByVal strTag As
String) As Long

PARAMETERS

pArea is the work area handle of the file opened by the GMW_DB_Open function.

szMin specifies the minimum or lower value of the range.

szMax specifies maximum or upper value of the range.

szTag is the index tag name.

RETURN VALUES

The GMW_DB_Range function returns the following values:
GMW_DB_Range Return Values

Return Description
0 Error occurred

1 Success

Performing a Sequential Search
GMW_DB_Search performs a sequential search on a file.

SYNTAX

C/C++ long GMW_DB_Search(long pArea, char *szExpr, char *szRecID);

Integrating With GoldMine

 129

VB Public Declare Function GMW_DB_Search Lib "gm6s32.dll" (ByVal lArea
As Long, ByVal strExpr As String, ByVal strRecID As String) As Long

PARAMETERS

pArea is the work area handle of the file opened by the GMW_DB_Open function.

szExpr is the valid Xbase expression. For a record to be “found” this expression must
result as TRUE.

szRecID is the buffer where the return value is stored. The return value will be a
record number under Xbase or a RecID under SQL. You may pass NULL as the third
parameter if you do not want the RecNo/RecID.

RETURN VALUES

The GMW_DB_Search function returns the following values:
GMW_DB_Search Return Values

Return Description
0 No match found

>0 Xbase: RecNo of the matching record; SQL: RecID of the matching record

Moving to the First Record Match
GMW_DB_Seek positions to the first record matching the seek value.

SYNTAX

C/C++ long GMW_DB_Seek(long pArea, char * szParam);

VB Public Declare Function GMW_DB_Seek Lib "gm6s32.dll" (ByVal lArea As
Long, ByVal strParam As String) As Long

PARAMETERS

pArea is the work area handle of the file opened by the GMW_DB_Open function.

szParam is the value you will seek. This value must match the format of the index
expression for the currently active index.

\RETURN VALUES

The GMW_DB_Seek function returns the following values:
GMW_DB_Seek Return Values

Return Description

0 Error occurred

1 Exact match found. Cursor moved to record.

2 Exact match not found. Cursor placed at closest matching record.

3 EOF (end of file)

4 BOF (beginning of file)

Integrating With GoldMine

130

Setting the Current Index Tag
GMW_DB_SetOrder sets the current index tag on the table.

SYNTAX

C/C++ long GMW_DB_SetOrder(long pArea, char *szTag);

VB Public Declare Function GMW_DB_SetOrder Lib "gm6s32.dll" (ByVal lArea As
Long, ByVal strTag As String) As Long

PARAMETERS

pArea is the work area handle of the file opened by the GMW_DB_Open function.
For a list of index names, see “Database Structures” on page 377.

szTag is the name of the index tag to activate on the table.

RETURN VALUES

The GMW_DB_SetOrder function returns the following values:
GMW_DB_SetOrder Return Values

Return Description
0 Error occurred

1 Index successfully activated

Positioning the Record Pointer
GMW_DB_Move positions the record pointer to a particular record in a data file.

SYNTAX

C/C++ long GMW_DB_Move(long pArea, char *szCommand, char *szParam);

VB Public Declare Function GMW_DB_Move Lib "gm6s32.dll" (ByVal lArea As
Long, ByVal strCommand As String, ByVal strParam As String) As Long

PARAMETERS

pArea is the work area handle of the file opened by the GMW_DB_Open function.

szCommand is the command to execute. Each of these commands has an
independent function equivalent that is the preferred method to use. This function
remains as a legacy to its DDE counterpart.

szParam is the scope or value for the command.
GMW_DB_Move Commands and Function Equivalents

Command Parameter Function Equivalents
TOP Not required GMW_DB_Top

BOTTOM

Not required GMW_DB_Bottom

SKIP Number of records to skip GMW_DB_Skip

GOTO Record Number/RecID GMW_DB_Goto

Integrating With GoldMine

 131

Command Parameter Function Equivalents
SEEK Search key value GMW_DB_Seek

SETORDER Index Tag GMW_DB_SetOrder

RETURN VALUES

The GMW_DB_Move function returns the following values:
GMW_DB_Move Return Values

Return Description
0 Error occurred

1 Exact match found. Cursor moved to record or index-activated.

2 Exact match not found. Cursor placed at closes matching record.

3 Cursor at end-of-file (EOF)

4 Cursor at beginning-of-file (BOF)

Moving to a Specified Record
GMW_DB_Goto positions to a specific record in the table.

SYNTAX

C/C++ long GMW_DB_Goto(long pArea, char *szRecNo);

VB Public Declare Function GMW_DB_Goto Lib "gm6s32.dll" (ByVal lArea As
Long, ByVal strRecNo As String) As Long

PARAMETERS

pArea is the work area handle of the file opened by the GMW_DB_Open function.

szRecNo specifies where the cursor should be placed, and is either the Record
number for Xbase or the RecID for SQL

RETURN VALUES

The GMW_DB_Goto function returns the following values:
GMW_DB_Goto Return Values

Return Description
0 Error occurred

1 Exact match found. Cursor moved to record or Index activated.

2 Exact match NOT found. Cursor placed at closest matching record.

3 Cursor at end-of-file (EOF)

4 Cursor at beginning-of-file (BOF)

Moving to the First Record
GMW_DB_Top positions to the first record in the table.

Integrating With GoldMine

132

SYNTAX

C/C++ long GMW_DB_Top(long pArea);

VB Public Declare Function GMW_DB_Top Lib "gm6s32.dll" (ByVal lArea As
Long) As Long

PARAMETER

The GMW_DB_Top function takes only pArea, which is the work area handle of the
file opened by the GMW_DB_Open function.

RETURN VALUES

The GMW_DB_Top function returns the following values:
GMW_DB_TopReturn Values

Return Description
0 Error occurred

1 Cursor moved to top of file

Moving to the Previous or Following Record
GMW_DB_Skip positions to the previous or following record in the table.

SYNTAX

C/C++ long GMW_DB_Skip(long pArea, int nSkip);

VB Public Declare Function GMW_DB_Skip Lib "gm6s32.dll" (ByVal lArea As
Long, ByVal lSkip As Long) As Long

PARAMETERS

pArea is the work area handle of the file opened by the GMW_DB_Open function.

nSkip specifies the number records to skip. This value can be positive to move
forward in the table or negative to move backwards.

RETURN VALUES

The GMW_DB_Skip function returns the following values:
GMW_DB_Skip Return Values

Return Description
0 Error occurred

1 Cursor successfully moved

3 Cursor at end-of-file (EOF)

4 Cursor at beginning-of-file (BOF)

Moving to the Last Record
GMW_DB_Bottom positions to the last record in the table.

Integrating With GoldMine

 133

SYNTAX

C/C++ long GMW_DB_Bottom(long pArea);

VB Public Declare Function GMW_DB_Bottom Lib "gm6s32.dll" (ByVal lArea
As Long) As Long

PARAMETER

The GMW_DB_Bottom function takes only pArea, which is the work area handle of
the file opened by the GMW_DB_Open function.

RETURN VALUES

The GMW_DB_Bottom function returns the following values:
GMW_DB_Bottom Return Values

Return Description
0 Error occurred

1 Cursor positioned on the last record in the table

Seeking a Record
GMW_DB_QuickSeek wraps several other database functions to provide a quick and
easy way to seek a record in the database.

SYNTAX

C/C++ long GMW_DB_QuickSeek(char *szTableName, char *szIndex, char
*szSeekValue, char *szRecID);

VB
Public Declare Function GMW_DB_QuickSeek Lib "gm6s32.dll" (ByVal
strTableName As String, ByVal strIndex As String, ByVal strSeekValue As
String, ByVal strRecID As String) As Long

PARAMETERS

szTableName is the name of the table to be opened.

szIndex is the index to use for the table.

szSeekValue is the seek expression to use.

szRecID is returned by the function. This is the RecID of the record found.

RETURN VALUES

The GMW_DB_QuickSeek function returns the following values:
GMW_DB_QuickSeek Return Values

Return Description
-2 Invalid Index

-1 Invalid table

0 Failure

1 Success

Integrating With GoldMine

134

Reading a Field Value
GMW_DB_QuickRead wraps several other database functions to provide a quick
and easy way to read a field value from a record in the database.

SYNTAX

C/C++ long GMW_DB_QuickRead(char *szTableName, char *szRecID, char
*szField, char *szValue, int iLen);

VB
GMW_DB_QuickRead Lib "gm6s32.dll" (ByVal strTableName As String,
ByVal strRecID As String, ByVal strField As StringByVal strValue As String,
ByVal iLen As Long) As Long

PARAMETERS

szTableName is the name of the table to be opened.

szRecID is the RecID of the record from which to read.

szField is the Field name to return.

szValue is the value returned by the function.

iLen is the length of the returned data.

RETURN VALUES

The GMW_DB_QuickRead function returns the following values:
GMW_DB_QuickRead Return Values

Return Description
-4 Invalid Fieldname

-3 RecID not found

-2 Invalid RecID

-1 Invalid table

0 Failure

1 Success

Replacing a Field Value
GMW_DB_QuickReplace wraps several other database functions to provide a quick
and easy way to replace a field value from a record in the database.

SYNTAX

C/C++ long GMW_DB_QuickReplace(char *szTableName, char *szRecID, char
*szField, char *szValue, int iAddTo);

VB
GMW_DB_QuickReplace Lib "gm6s32.dll" (ByVal strTableName As String,
ByVal strRecID As String, ByVal strField As String, ByVal strValue As
String, ByVal iAddTo As Integer) As Long

Integrating With GoldMine

 135

PARAMETERS

szTableName is the name of the table to be opened.

szRecID is the RecID of the record to be updated.

szField is the Field name to replace.

szValue is the value to store in the field.

iAddTo indicates if the value data is to be appended (1) or replaced (0=default).

RETURN VALUES

The GMW_DB_QuickReplace function returns the following values:
GMW_DB_QuickReplace Return Values

Return Description
-4 Invalid Fieldname

-3 RecID not found

-2 Invalid RecID

-1 Invalid table

0 Failure

1 Success

Updating Sync Logs with GMXS32.DLL
The GoldMine GMXS32.DLL provides a method to update GoldMine
synchronization logs whenever an external application updates GoldMine data.

GMXS32.DLL offers the following synchronization functions:

GMW_UpdateSyncLog: Updates the sync log file

GMW_ReadImpTLog: Imports a prepared TLog import file

GMW_NewRecID: Gets a new RecID

GMW_SyncStamp: Converts sync stamp to time and converts time back to sync
stamp

Updating the Sync Log File

SYNTAX

C/C++ int GMW_UpdateSyncLog(char *szTable, char *szRecID, char *szField, char
*szAction)

VB
GMW_UpdateSyncLog Lib "gm6s32.dll" (ByVal strTable As String, ByVal
strRecID As String, ByVal strField As String, ByVal strAction As String) As
Long

PARAMETERS

szTable specifies the table name (such as “Contact1”) or the table ID.

Integrating With GoldMine

136

szRecID specifies the RecID of the updated record: the correct RecID must be passed,
and the RecID value must be exactly 15 characters long.

szField specifies the name of the field that has changed. This parameter is only
relevant when the Action parameter is U. szField is ignored when Action is N or D.

szAction should be N when a new record has been appended, D when a record has
been deleted, or U when a field in a record has been updated.

RETURN VALUES

The GMW_UpdateSyncLog function returns the following values:
GMW_UpdateSyncLog Return Values

Return Description
0 Error

1 New TLog entry created

2 New TLog entry updated

4 Field TLog entry created

8 Field TLog entry updated

16 Deleted record TLog entry created

32 New TLog Entry removed

EXAMPLE
char szTable[10] = "CONTACT1";
char szField[12] = "KEY2";
char szRecID[20] = "\0";
char szAction = 'U';
GMW_NewRecID(szRecID,"JON"); GMW_UpdateSyncLog(szTable, szRecID,
szField, szAction);

Importing a Prepared TLog Import File
GMW_ReadImpTLog reads the status of a TLog import file, then deletes the import
file when the process is completed.

SYNTAX

C/C++ int GMW_ReadImpTLog(char *szFile, int bDelWhenDone, char *szStatus)

VB
Public Declare Function GMW_ReadImpTLog Lib "gm6s32.dll" (ByVal
strFile As String, ByVal lDelWhenDone As Long, ByVal strStatus As String)
As Long

PARAMETERS

szFile specifies the import file name—see below for the import file structure.

IDeleteWhenDone specifies to delete the import file when the process has completed.

SzStatus buffer used to monitor the status of the process. Optional, can be NULL. If
passed, the szStatus buffer must be at least 10 characters long.

Integrating With GoldMine

 137

RETURN VALUES

The GMW_ReadImpTLog function returns the following values:
GMW_ReadImpTLog Return Values

Return Description
0 Failure

> 0 Success, total number of imported TLog records

NOTES

GMW_LoadAPI or GMW_LoadBDE must be called before calling
GMW_ReadImpTLog for the first time. GMW_ReadImpTLog is executed in a thread,
so multiple calls can be made. Your application can determine when the imported
process completes by setting the iDeleteWhenDone parameter to 1, and noting when
the import file is deleted. The TLog import must have the structure shown in the
following table.
TLog Import Structure

Field Name Type Length
Table ID char 10

RecID char 15

Field ID char 10

Action ID char 1

EXAMPLE
char szImpFile[80] = "d:\\GoldMine\\tlogimp.dbf";
char szStatus[20] = "\0";
int iDeleteWhenDone = 1;
int nTotRead = GMW_ReadImpTLog(szImpFile, iDeleteWhenDone, szStatus
);

Getting a New Record ID
GMW_NewRecID returns a new RecID in the szRecIDBuf.

SYNTAX

C/C++ char* GMW_NewRecID(char *szRecIDBuf, char *szUser)

VB Public Declare Function GMW_NewRecID Lib "gm6s32.dll" (ByVal strRecID
As String, ByVal strUser As String) As GMWStr

PARAMETERS

szRecID specifies the application allocated buffer to contain the new RecID. The
buffer must be at least 16 characters long.

szUser specifies the GoldMine user name.

RETURN VALUE

pointer to szRecIDBuf

Integrating With GoldMine

138

NOTES

GMW_NewRecID returns a new RecID in the szRecIDBuf. GMW_NewRecID can be
called without first calling GMW_LoadAPI or GMW_LoadBDE.

EXAMPLE
char szRecID[20] = "\0";
char szUser[10] = "JON";
GMW_NewRecID(szRecID, szUser);

Converting the Sync Stamp
GMW_SyncStamp converts Sync Stamp to time format and back.

SYNTAX

C/C++ int GMW_SyncStamp(char *szStamp, char *szOutBuf)

VB Public Declare Function GMW_SyncStamp Lib "gm6s32.dll" (ByVal
strStamp As String, ByVal strOutBuf As String) As Long

PARAMETERS

When the szStamp string parameter is exactly 17 characters long, formatted as
Date:Time in form of CCYYMMDD:HH:MM:SS, the return string in szOutBuf is in
TLog timestamp format, exactly seven characters long. When the szStamp parameter
is seven characters long formatted as a TLog timestamp, the return string in
szOutBuf is formatted as CCYYMMDD:HH:MM:SS.

RETURN VALUES

The GMW_SyncStamp function returns the following values:
GMW_SyncStamp Return Values

Return Description
0 Failure

1 Success

NOTES

An empty return string indicates an error.

EXAMPLE

The following examples convert February 1, 1998, at 7:01pm to a TLog time stamp
format, then back to a date and time format:

Char szOut[20] = "\0"
GMW_SyncStamp("19980201:19:01:30", szOut); // returns "+#G><N2"
GMW_SyncStamp("+#G><N2", szOut); // returns "19980201:19:01:30"

Integrating With GoldMine

 139

Working with the XML API

Beginning in GoldMine version 6.7, the GoldMine API can be accessed using XML
via the GMXMLAPI.DLL. The programmer may pass XML generated
programmatically by concatenating strings or by using the Document Object Model
(DOM). XML provides a simple and flexible medium for passing and receiving data
from GoldMine’s API.

A DOM Parser, such as MSXML or Xerces, should be utilized in constructing the
XML documents for the GoldMine XML API. All GoldMine data needs to be
XMLEncoded to avoid conflicts with XML entities (ie. < > ‘ &). A DOM Parser
would handle this, in addition to creating well-formed XML. Finally, some of the
XML documents returned will be too large to be handled by manually looping
through the XML; whereas a parser would make accessing the returned data much
more manageable.

The GMXMLAPI.DLL is used independently of the GMXS32.DLL. The XML API
exposes all of the functionality present in the GMXS32, including the low-level data
access functions. However, the power of implementing an integration with XML
allows the use of the GoldMine API in any development environment that supports
COM, including VB, VB.NET, C++, C#, and JAVA.

This chapter will discuss how to login to GoldMine with the XML API , how to call
the business logic functions, and accessing the low level data functions. For specific
information on the names of the business logic functions and acceptable data
parameters and their return values, see Business Logic Functions and Name/Value Pairs
on page 263.

Integrating With GoldMine

140

Executing Your XML Document
Once the XML document has been created, pass it to the GoldMine XML API with
the ExecuteCommand method. This is the only method exposed in the XML API. It
accepts one parameter, xmlIn (the XML document prepared by the developer) and
returns the resulting XML document detailing result and/or error codes.

EXAMPLE
xmlout = GMAPI.ExecuteCommand(xmlIn)

Creating Your XML Document
The root XML element for the GoldMine XML API is defined as the following:

<GMAPI call="FunctionName">

 <data name="Parameter1">Parameter Value</data>

 <data name="Parameter2">Parameter Value 2</data>

</GMAPI>

Loading the API (GoldMine 7.0 or higher)
The first function to execute is loading the API with the desired parameters. Calling
the LoadAPI function will also login the specified user into the API.

 The GoldMine XML API will always use a GoldMine seat for each user that
is logged into it. The total number of users logged into GoldMine will be all
workstation users and add-on applications combined.

To load the API and login the user, create the following XML:
<GMAPI call="LoadAPI">

 <data name="User">kevin</data>

 <data name="Password">mygmpass</data>

 <data name="SysDir">c:\program files\goldmine\</data>_

 <data name="GoldDir">c:\program files\goldmine\gmbase\</data> _

 <data name="ComDir">c:\program files\goldmine\common\</data> _

 <data name="SQLUser">sa</data>_

 <data name="SQLPassword"></data>

</GMAPI>

PARAMETERS

The LoadAPI function takes seven parameters.

User: Specifies the GoldMine user name (case insensitive).
You may set this parameter to the value of *DDE_LOGIN_CREDENTIALS* to use
login credentials returned for the user logged into a running copy of GoldMine
through DDE or COM.

Integrating With GoldMine

 141

Password: Specifies the user’s password (case insensitive).
You may set this to the return string from the GetLoginCredentials DDE or COM
command if the User parameter is set to *DDE_Login_Credentials*. The credential
string is only valid for 30 seconds.

SysDir: Specifies the location of the LICENSE.BIN file (Version 7.0 or later).

GoldDir: Specifies the location of the CAL table.

ComDir: Specifies the location of the CONTACT1 table.

SQLUser: The login name for the SQL Server, if applicable.

SQLPassword: The password for the SQL Server, if applicable.

 The GMXS32.DLL required the call of GMW_SetSQLUserPass prior to
calling GMW_LoadBDE in order to set the SQL username and password.
This extra call is not used in the XML API.

The returned XML from LoadAPI will indicate if the call succeeded, and if so, a
SessionID. This session ID is used to reference this particular user’s API session.
This is important in applications where multiple users are logged into the API
simultaneiously. Even if the integration will only have one user logged in at a time,
the Session ID must still be referenced in future calls to the XML API.

<GMAPI SessionID="1" call="LoadAPI">

<status code="1">API loaded successfully</status>

</GMAPI>

The status code will always give a description as to the cause of any generated
errors. The possible return codes are as follows.
LoadAPI Return Values

Return Description
1 API loaded successfully

0 API already loaded

-1 API failed to load

-2 Cannot find license file

-3 Cannot load license file

-4 Cannot validate the license file username/password

-5 Invalid GoldDir

-6 Invalid CommonDir

-7 Failed to allocate the needed TLS slot

-8 General Failure

-9 No access to specified contact set for this user

Integrating With GoldMine

142

Loading BDE (GoldMine 6.7)
The first function that needs to be executed is loading the Borland Database Engine.
Calling the function to load BDE will also login the specified user into the API.

 The GoldMine XML API will always use a GoldMine seat for each user that
is logged into it. The total number of users logged into GoldMine will be all
workstation users and add-on applications combined.

To load the Borland Database Engine, create the following XML:
<GMAPI call="LoadBDE">

 <data name="User">kevin</data>

 <data name="Password">mygmpass</data>

 <data name="SysDir">c:\program files\goldmine\</data>_

 <data name="GoldDir">c:\program files\goldmine\gmbase\</data> _

 <data name="ComDir">c:\program files\goldmine\common\</data> _

 <data name="SQLUser">sa</data>_

 <data name="SQLPassword"></data>

</GMAPI>

PARAMETERS

The LoadBDE function takes seven parameters.

User: Specifies the GoldMine user name (case insensitive).
You may set this parameter to the value of *DDE_LOGIN_CREDENTIALS* to use
login credentials returned for the user logged into a running copy of GoldMine
through DDE or COM.

Password: Specifies the user’s password (case insensitive).
You may set this to the return string from the GetLoginCredentials DDE or COM
command if the User parameter is set to *DDE_Login_Credentials*. The credential
string is only valid for 30 seconds.

SysDir: Specifies the location of the LICENSE.DBF.

GoldDir: Specifies the location of CAL.DBF.

ComDir: Specifies the location of CONTACT1.DBF.

SQLUser: The login name for the SQL Server, if applicable.

SQLPassword: The password for the SQL Server, if applicable.

 The GMXS32.DLL required the call of GMW_SetSQLUserPass prior to
calling GMW_LoadBDE in order to set the SQL username and password.
This extra call is not used in the XML API.

The returned XML from LoadBDE will indicate if the call succeeded, and if so, a
SessionID. This session ID is used to reference this particular user’s API session.
This is important in applications where multiple users are logged into the API
simultaneiously. Even if the integration will only have one user logged in at a time,
the Session ID must still be referenced in future calls to the XML API.

Integrating With GoldMine

 143

<GMAPI SessionID="1" call="LoadBDE">

<status code="1">BDE loaded successfully</status>

</GMAPI>

The status code will always give a description as to the cause of any generated
errors. The possible return codes are as follows.
LoadBDE Return Values

Return Description
1 BDE loaded successfully

0 BDE already loaded

-1 BDE failed to load

-2 Cannot find license file

-3 Cannot load license file

-4 Cannot validate the license file username/password

-5 Invalid GoldDir

-6 Invalid CommonDir

-7 Failed to allocate the needed TLS slot

-8 General Failure

-9 No access to specified contact set for this user

Logging in Subsequent Users
If an additional user needs to be logged into the XML API, call the Login method.

<GMAPI call="Login">

 <data name="User">MASTER</data>

 <data name="password">ACCESS</data>

 <data name="ComDir">c:\program files\goldmine\common\</data> _

 <data name="SQLUser">sa</data>

 <data name="SQLPassword">mypassword</data>

</GMAPI>

PARAMETERS

The Login function takes five parameters.

User: Specifies the GoldMine user name (case insensitive).
You may set this parameter to the value of *DDE_LOGIN_CREDENTIALS* to use
login credentials returned for the user logged into a running copy of GoldMine
through DDE or COM.

Password: Specifies the user’s password (case insensitive).
 You may set this to the return string from the GetLoginCredentials DDE or COM
command if the User parameter is set to *DDE_Login_Credentials*. The credential
string is only valid for 30 seconds.

Integrating With GoldMine

144

ComDir: Specifies the location of CONTACT1.DBF.

SQLUser: The login name for the SQL Server, if applicable.

SQLPassword: The password for the SQL Server, if applicable.

The Login function returns the following XML:
<GMAPI SessionID="2" call="Login">

<status code="1">Login Successful</status>

</GMAPI>

Login Return Values
Return Description

1 Success

0 Failure

-1 User does not have permission to open the current contact set.

Logging Out
To log out a user when multiple users are logged in, use the Logout function. This
function will free the license seat previously used by the Login function. Be sure to
call this function for each session that has been opened.

SYNTAX

XML <GMAPI call="Logout" SessionID="2"/>

PARAMETERS

SessionID is the integer value returned by the Login function.

RETURNS

The function will return a code attribute of “1” if the specified SessionID was valid.
The returned XML will look like the following:

<GMAPI SessionID="2" call="Logout">

<status code="1">Logout succeeded for the supplied session.</status>

</GMAPI>

Unloading the API (GoldMine 7.0 or higher)
Before ending your GoldMine integration application, the API needs to be unloaded.
The XML to unload the API is as follows:

<GMAPI call="UnloadAPI" SessionID="1"/>

The actual SessionID will be the value that was returned by the LoadAPI call.

Integrating With GoldMine

 145

Unloading BDE (GoldMine 6.7)
Before ending your GoldMine integration application, the Borland Database Engine
needs to be unloaded. The XML to unload the BDE is as follows:

<GMAPI call="UnloadBDE" SessionID="1"/>

The actual SessionID will be the value that was returned by the LoadBDE call.

Accessing Data with Business Logic Functions
Reading and modifying GoldMine data with the business logic functions is the best-
practice method for integrating with GoldMine. For the XML root element, the call
will be any business logic function name, as described in Chapter 6, Business Logic
Functions. Each data name will be the name portion of the defined name/value
pairs, and the text for that node is the value portion of a name/value pair. For
example, to create a contact using the GoldMine XML API, one would create an XML
document like the following:

<GMAPI call=”WriteContact” SessionID=”1”>

 <data name=”Contact”>Sam Jackson</data>

 <data name=”Company”>Jackson Heating</data>

 <data name=”Phone1”>(123)456-7890</data>

</GMAPI>

Accessing Nested Nodes of Data
Some business logic functions require or return nodes that contain nested nodes. For
example, if you wish to add members to a contact group, the XML would look like
the following:

<GMAPI call="AddContactGrpMembers" SessionID="1">

<data name="GroupNo">1234</data>

<data name="Members">

<data name="AccountNo">A3042474804 WB9!JCat</data>

<data name="Reference">A Reference Value</data>

</data>

<data name="Members">

<data name="AccountNo">A3082867459(LP:#JGab</data>

<data name="Reference">Another Reference</data>

</data>

<data name="Members">

<data name="AccountNo">A3060244052#3?(N3Ste</data>

<data name="Reference">The last Reference Value</data>

</data>

</GMAPI>

Integrating With GoldMine

146

Each time there needs to be an additional node for the Members node, simply repeat
the Members node with the required data. This applies to any business logic
function that requires more than one data value for a node, or more than one nested
node.

Business Logic Function Return Values
The business logic functions will return the same return codes as described in
Chapter 6, Business Logic Functions. An example of the XML returned is as follows:

Input XML:
<GMAPI call="WriteContact" SessionID="1">

<data name="Contact">Joe Smith</data>

<data name="Company">Joes Window Washing</data>

<data name="phone1">3106548963</data>

</GMAPI>

Returned XML:
<GMAPI SessionID="1" call="WriteContact">

<status code="1">Success</status>

<data name="Return">

<data name="AccountNo">A4100552319*T_S{3Del</data>

<data name="COMPANY">Joes Window Washing</data>

<data name="CONTACT">Joe Smith</data>

<data name="PHONE1">3106548963</data>

<data name="RecID">AP7Q62B&*AK=3\T</data>

</data>

</GMAPI>

Accessing Low-level Data Manipulation Functionality
The following sections describe additional functions in the GoldMine XML API that
allow data reading and updating via low-level methods. Use of the following
functions requires in-depth knowledge of the GoldMine data structures and business
rules. They are useful for accessing and writing data that is not accessible via the
high-level business logic functions.

Retrieving Data with DataStream
DataStream returns the data of ordered records from any GoldMine table using the
most efficient method available. The caller can specify:

• Fields and expressions to return

• Range of records to return

Integrating With GoldMine

 147

• Optional filter to apply to the data set

DataStream SQL query capabilities are very fast on SQL databases.

The DataStream method allows for many useful applications. One such group of
applications would merge HTML templates with the data returned by GoldMine
DataStream to publish the contents of GoldMine data on the Internet. Web pages can
be created to display GoldMine data requested by a visitor. Based on visitor
selections, a company could dynamically present a variety of HTML pages,
including dealer addresses in a particular city, financial numbers stored in Contact2,
and even seating availability at upcoming conferences. With a fast Internet
connection and a strong SQL server, the GoldMine client could respond
simultaneously to dozens of requests.

Advantages of Using DataStream
GoldMine DataStream is absolutely the fastest way to read data from GoldMine
tables. Used correctly, DataStream will return the data faster than most development
environments would directly. DataStream offers the following advantages:

• Efficiency: DataStream issues a single, most efficient SQL query or Xbase
seek to retrieve records from the back-end database to the local client. On
SQL databases, requests of a few hundred records could be sent from the
server to the client with a single network transaction, greatly minimizing
network traffic.

• Speed: All fields and expressions are parsed initially by DS_Range and
DS_Query, and then quickly evaluated against each record in DS_Fetch.
Other DDE methods (and development environments) require that each
field be parsed and evaluated each time its data is read. This makes a big
difference when reading hundreds or thousands of records.

• Simplicity: Only three function calls are required to read all the data.
Using traditional record-by-record querying would require one call for
each field of each record (reading 10 fields from 50 records would require
500 function calls).

• Results: All the work to gather and format the data is done in C++, which
is the fastest method. The caller needs only to parse the resulting packet
string.

DataStream Record Selection
The following DataStream functions are listed in the order in which they must be
called.

DS_Range: Opens a ranged cursor

DS_Query: Opens an SQL query cursor

DS_Fetch: Fetches records

DS_Close: Closes cursor

Integrating With GoldMine

148

Either the DS_Range function or the DS_Query function must be called first to
request the data. These functions return the integer handle which must be passed to
the DS_Fetch and DS_Close functions.

You must use either DS_Range or DS_Query—you cannot use both. The DS_Range
and DS_Query functions execute equally fast on SQL databases. DS_Range executes
much faster on Xbase tables than does DS_Query.

DS_Range

SYNTAX

XML

<GMAPI call = “DS_Range” sessionid=”X”>
 <data name = "Table">CONTACT1</data>
 <data name = "Tag">Contacc</data>
 <data name="TopLimit"> A3042474804
WB9!Jcat</data>
 <data name ="BotLimit">
A4090244569#H4J*3Dav</data>
 <data
name="Fields">CONTACT;COMPANY;PHONE1</data>
 <data name="Filter"/>

</GMAPI>

DS_Range returns a range of records based on an index.

PARAMETERS

The following parameters are required:

Table specifies the table name (such as “Contact1”) or the table ID.

Tag designates the tag that corresponds to the index file.

TopLimit specifies the top limit of the range. (Must conform to the index expression.)

BotLimit (or BottomLimit) specifies the bottom limit of the range. (Must conform to
the index expression.)

Fields specifies the requested fields and expression to return—see “DS_Range Field
Selection” on the following page.

The following parameters are optional:

Filter designates an optional Xbase filter expression.

RETURN VALUES

The XML returned by DS_Range will look like the following:
<GMAPI SessionID="2" call="DS_Range">

<status code="1">1</status>

</GMAPI>

Integrating With GoldMine

 149

The text of the code attribute is used as the “Area” or “Handle” value for DS_Fetch.

The DS_Range function returns the following values:
GMW_DS_Range Return Values

Return Description
0 Failure

1–20 Success (handle)

DS_RANGE FIELD SELECTION

The Fields parameter passed to DS_Range should consist of the field names and
Xbase expressions to evaluate against each record in the data set. Each field must be
terminated with a semicolon (;). Xbase expressions must be prefixed with an
ampersand (&), and terminated with a semicolon. Be sure to XML encode this as the
ampersand is an XML entitiy.

DS_Query

SYNTAX

XML

 <GMAPI call =”DS_Query” SessionID =”1”>
 <data name = “SQL”>select recid from contsupp</data>

 <data name=“Filter">xBase expression filter</data>
</GMAPI>

This function is very fast on SQL databases.

PARAMETERS

SQL query sends the query for evaluation on the server. The SQL query can join
multiple tables and return any number of fields.

Optional parameter Filter specifies a Boolean Xbase filter expression to apply to the
data set (even on SQL tables), similar to the DDE SETFILTER command.

RETURN VALUES

The DS_Query function returns the following values:
DS_QueryReturn Values

Return Description
0 Failure

-1 Invalid Query/Timeout

1–20 Success (handle)

DS_Fetch
DS_Fetch returns a single packet string containing the requested data from all records
processed by the current “fetch” command.

Integrating With GoldMine

150

SYNTAX
XML <GMAPI call=”DS_Fetch” SessionID=”3”>

<data name=”Area”>Value returned from Query or
Range</data>

<data name=”RecordCount”>50</data>

<data name=”Raw”>1</data>

 </GMAPI>

PARAMETERS:

RecordCount (or RecCount) specifies the number of records to return.

Area must be the value returned from DS_Range() or DS_Query().

OPTIONAL PARAMETERS:

FldDmt (or FieldDelimiter) specifies the field delimiter (default: carriage return). Omit
this data node completely to use the default value.

RowDmt (or RowDelimiter) specifies the record delimiter (default: line feed). Omit
this data node completely to use the default value.

Raw indicates the format the data should be returned as. The default (“0”) puts the
data into XML format. Setting Raw to “1” returns the data stream in the old return
packet format, as described below.

For details about the packet format, see “DS_Fetch Return Packet” below.

THE XML RETURN PACKET

DS_Fetch has an option in the GoldMine XML API to return the data in an XML
format that is easier to process than the traditional datastream return packet.
Consider the following DS_Query XML call:

<GMAPI call="DS_Query" SessionID="1">

<data name="SQL">select contact, company, key1 from contact1 where
contact=’Rafael Zimberoff’</data>

<data name="Filter"/>

</GMAPI>

Returns:
<GMAPI SessionID="1" call="DS_Query"><status
code="1">1</status></GMAPI>

The DS_Fetch call to retrieve the requested data is:
<GMAPI call="DS_Fetch" SessionID="1">

<data name="Area">1</data>

<data name="Raw">0</data>

<data name="RecordCount">25</data>

</GMAPI>

Integrating With GoldMine

 151

The resulting XML datastream return packet is:
<GMAPI SessionID="1" call="DS_Fetch">

<status code="1">Success</status>

<data name="Return">

<data name="Header">

<data name="field">

<data name="Field_Name">CONTACT</data>

<data name="Field_Type">C</data>

<data name="Field_Length">40</data>

<data name="Field_Decimal">0</data>

</data>

<data name="field">

<data name="Field_Name">COMPANY</data>

<data name="Field_Type">C</data>

<data name="Field_Length">40</data>

<data name="Field_Decimal">0</data>

</data>

<data name="field">

<data name="Field_Name">KEY1</data>

<data name="Field_Type">C</data>

<data name="Field_Length">20</data>

<data name="Field_Decimal">0</data>

</data>

</data>

<data name="CountData">3000-0001</data>

<data name="Rows">

<data Name="Row">

<data name="CONTACT">Rafael Zimberoff</data>

<data name="COMPANY">Z-Firm LLC</data>

<data name="KEY1">Partner</data>

</data>

</data>

</data>

</GMAPI>

The Header node contains child nodes for each field included in the SQL query,
describing the fields’ properties. The CountData node’s text corresponds with the
old fetch return packet’s header data:

The first digit can be 0, 3, or 4:

0 indicates that more records are available, which could be fetched with another
DS_Fetch call

3 indicates the end-of-file (EOF)

4 indicates the beginning-of-file (BOF)

Integrating With GoldMine

152

Number following the dash indicates the total number of data records contained in
the packet.

The Rows node contains a child node for each data record returned by the query.

DS_FETCH RETURN PACKET

DS_Fetch returns a single packet string containing the data from all requested records.
The packet includes a header record, followed by one record for each record evaluated
by “fetch.” Within each record in the packet, the fields are separated by a field
delimiter specified in DS_Fetch. By default, the field delimiter is the carriage return
character (13 or 0x0D).

The records in the packet are separated by the record delimiter. By default, the
record delimiter is the line feed character by default (10 or 0x0A).

These delimiters are convenient when the requested data does not contain notes
from blob fields. You can omit FldDmt and RowDmt to use the default delimiters.
When requesting notes, override the default delimiters by passing other delimiter
values to DS_Fetch. For packets with notes, good delimiters are the ASCII characters
1 and 2.

The XML example above might return xml similar to:

<GMAPI SessionID="3" call="DS_Fetch">

<status code="1">3000-0003

A3053029581%`O6B3Sim

A4082371189*>$>B3Vin

A4090244569#H4J*3Dav

</status>

</GMAPI>

The packet header record consists of two sections:

First byte can be 0, 3, or 4:

0 indicates that more records are available, which could be fetched with another
DS_Fetch call

3 indicates the end-of-file (EOF)

4 indicates the beginning-of-file (BOF)

Number following the dash indicates the total number of data records contained in
the packet.

DS_Close
DS_Close must be called when the operation is complete. Unclosed data streams will
leak memory and leave the database connections needlessly open. Passing an Area
(or Handle) of 0 closes all open DataStream objects.

Integrating With GoldMine

 153

SYNTAX

XML
<GMAPI call="DS_Close" SessionID="4">
 <data name="Area">1</data>
</GMAPI>

DS_Close returns the following XML:

<GMAPI SessionID="4" call="DS_Close">

<status code="1">Success</status>

</GMAPI>

Accessing Low-Level Data Using Work Areas
The GoldMine XML API provides a complete set of functions that allow low-level
access to the database tables. Using these functions, you can:

• Open particular data files

• Seek the values of the fields in the records in the data files

• Append records to the tables

• Delete records

• Replace data in the records

Database applications that need varied access to GoldMine data typically use this
suite of functions. To work successfully, these functions rely on a work area
parameter. Using this parameter, you can open multiple data files concurrently and
manipulate each file independently by referencing the file by work area. These functions
also maintain synchronization information, which is stored in the TLogs.

The GoldMine XML API offers the low-level access functions that are listed in the
following table.
GMXS32.DLL Low-Level Access Functions

Function Name Description
Opening and Closing Databases
DB_Open Opens one GoldMine data file for processing by another application

DB_Close Releases a previously OPENed file when processing is complete

DB_IsSQL Determines whether the table is SQL (1) or Xbase (0)

Creating and Deleting Records
DB_Append Adds a new, empty record to a GoldMine data file

DB_Delete Deletes the current record in the specified work area.

Reading and Writing Data
DB_Read Queries a data file for the value of a field

Integrating With GoldMine

154

Function Name Description
DB_RecNo Determines either current record number position (Xbase), or the

record ID (SQL)

DB_Replace Changes the value in a particular field in one GoldMine data file

DB_Unlock Unlocks a record previously locked by a call to either GMW_DB_Append or
GMW_DB_Replace

Limiting Scope of Data

DB_Filter Limits access to data in a GoldMine database by creating a subset of records
based on expression criteria

DB_Range Activates the index in a table, and sets a range of values to limit the scope of
data that GoldMine will search

Searching for Data

DB_Search Performs a sequential search on a file

DB_Seek Positions to the first record matching the seek value

DB_SetOrder Sets the current index tag on the table

Navigating the
Database

DB_Move Positions the record pointer to a particular record in a data file

DB_Goto Positions to a specific record in the table

DB_Top Positions to the first record in the table

DB_Skip Positions to the next or prior record in the table

DB_Bottom Positions to the last record in the table

GMXS32.DLL Low-Level Access Functions
Function Name Description

DB_QuickSeek Wraps several DLL functions to perform a Seek based on an index

DB_QuickRead Wraps several DLL function to perform a Read

DB_QuickReplace Wraps several DLL functions to perform a Replace

Detailed descriptions of each database access function appear on the following
pages. Some of the following functions refer to table names, field names, and index
tags. For details, see “Xbase Database Structures” on page 377 or SQL Database
Structures” on page 393.

Opening a Data File
DB_Open opens one GoldMine data file for processing by another application. Be
sure to call DB_Close after completing all operations on the open table. Failing to do
so will cause the UnloadAPI or UnloadBDE function to wait indefinitely for the
resource to close.

Integrating With GoldMine

 155

SYNTAX

XML
<GMAPI call="DB_Open" SessionID=”1”>
 <data name="Table">Contact1</data>
</GMAPI>

PARAMETER

The DB_Open function takes only Table(or File), which is the name of the table to be
opened.

RETURN VALUES

The XML returned by DB_Open for a successful call will look like the following:
<GMAPI SessionID="2" call="DB_Open">

 <status code="1">76007040</status>

</GMAPI>

The code attribute will be 1 on success and the text of the attribute is the workarea to
be used for subsequent low-level calls. If the call is unsuccessful, the code will be 0
and the text will indicate an error.

DB_Open Code Attribute Values

Code Text
0 Error occurred

1 Work area handle for table, for example 57919176

Closing a Data File
DB_Close releases a previously opened file when processing is complete. All
previously opened files must be properly closed—failure to do so can result in
database errors.

SYNTAX

XML
<GMAPI call="DB_Close" SessionID="2">
 <data name="Area">76007040</data>
</GMAPI>

PARAMETERS

The DB_Close function takes only Area, which is the work area handle of the file
opened by the DB_Open function.

RETURN VALUES

DB_Close returns the following XML on success:
<GMAPI SessionID="2" call="DB_Close">

 <status code="1">Success</status>

</GMAPI>

Integrating With GoldMine

156

Checking for an SQL Table
DB_IsSQL is used to determine if the table is MSSQL (1) or Other (0).

SYNTAX

XML
<GMAPI call="DB_IsSQL" SessionID="3">
 <data name="Area">76021592</data>
</GMAPI>

PARAMETER

The DB_IsSQL function takes only Area, which is the work area handle of the file
opened by the DB_Open function.

RETURN VALUES

The DB_IsSQL function returns the following values:
<GMAPI SessionID="3" call="DB_IsSQL">

 <status code="0">The open file is xBase.</status>

</GMAPI>

DB_IsSQL Code Attribute Values
Code Description
0 The open file is Other

1 The open file is MSSQL

Adding a Record
DB_Append adds an empty record to a GoldMine data file.

SYNTAX

XML
<GMAPI call="DB_Append" SessionID="3">
 <data name="Area">76021592</data>
</GMAPI>

Before using DB_Append, you must open a data file using the DB_Open function.
After executing the DB_Append function, the record pointer is positioned at the new
empty record, and the record is locked and ready to accept field replacements.

When a CONTACT1 record is appended, GoldMine automatically fills in the new
record with the appropriate ACCOUNTNO and CREATEBY values. For all other
records, you must replace the ACCOUNTNO field with the value from the
CONTACT1 record with which the new record is to be linked. The GoldMine XML
API will automatically fill in the value of the RECID field.

PARAMETERS

Area is the work area handle of the file opened by the DB_Open function.

Integrating With GoldMine

 157

RETURN VALUE

Xbase: APPEND function returns the record number of the new record as the code
attribute, or 0 if the file could not be locked. The text of the code attribute is also the
record number in xBase, Record ID in SQL and FireBird.

<GMAPI SessionID="3" call="DB_Append">

<status code="64">64</status>

</GMAPI>

SQL: APPEND function returns the RECID of the new record in the text of the code
attribute. The code will be 1 or 0 indicating success or failure.

<GMAPI SessionID="3" call="DB_Append">

<status code="1">9NDJRJN(EQ[)JW:</status>

</GMAPI>

Deleting the Current Record
DB_Delete deletes the current record in the specified work area and moves the
record pointer to the next record.

SYNTAX

XML
<GMAPI call="DB_Delete" SessionID="4">
 <data name="Area">73140736</data >
</GMAPI>

PARAMETER

The DB_Delete function takes only Area, which is the work area handle of the file
opened by the DB_Open function.

RETURN VALUES

The DB_Delete function returns the following XML:
<GMAPI SessionID="4" call="DB_Delete">

<status code="1">Success</status>

</GMAPI>

DB_Delete Code Attribute Values
Code Description
0 Error occurred

1 Record deleted

Reading a Field Value
DB_Read queries a data file for the value of a field.

Integrating With GoldMine

158

SYNTAX

XML

<GMAPI call="DB_Read" SessionID="5">
 <data name="Area">73154424</data>
 <data name="Field">Company</data>
</GMAPI>

PARAMETERS

Area is the work area handle of the file opened by the GMW_DB_Open function.

Field is the name of the field to read within the table.

RETURN VALUE

The XML returned for DB_Read using the sample XML above is as follows:
<GMAPI SessionID="5" call="DB_Read">

<status code="1">FrontRange Solutions, Inc.</status>

</GMAPI>

DB_Range Code Attribute Values
Code Description
0 Error occurred

1 Success

Checking the Current Record Number or Record ID
DB_RecNo is used to determine either current record number position (Xbase) or the
record ID (SQL or FireBird).

SYNTAX

XML
<GMAPI call="DB_RecNo" SessionID="7">
 <data name="Area">73166392</data>
</GMAPI>

PARAMETERS

Area is the work area handle of the file opened by the DB_Open function.

RETURN VALUE

Xbase: Returns the current record number

SQL: Returns the current RecID

The returned XML will look like the following:
<GMAPI SessionID="7" call="DB_RecNo">

 <status code="1">BDNHWD5#0PA5]WV</status>

</GMAPI>

Integrating With GoldMine

 159

Changing a Field Value
DB_Replace changes the value in a particular field in one GoldMine data file. After
all replace operations on a single record are complete, the record must be unlocked
using DB_Unlock.

SYNTAX

XML

<GMAPI call="DB_Replace" SessionID="9">
 <data name="Area">73177576</data>
 <data name="Field">Contact</data>
 <data name="NewValue">XML Contact</data>
 <data name="Append">0</data>
</GMAPI>

PARAMETERS

Area is the work area handle of the file opened by the DB_Open function.

Field specifies the name of the field to be replaced.

NewValue specifies the data to be placed in the field.

Append indicates if the data is to be appended to the existing data. A value of 1 will
append the data. A value of 0 will overwrite the data.

RETURN VALUES

The DB_Replace function returns the following XML:
<GMAPI SessionID="9" call="DB_Replace">

<status code="1">Success</status>

</GMAPI>

DB_Replace Code Attribute Values
Code Description
0 Error occurred

1 Field was successfully replaced

Unlocking a Record
DB_Unlock unlocks a record previously locked by a call to either DB_Append or
DB_Replace.

SYNTAX

XML
<GMAPI call="DB_Unlock" SessionID="3">
 <data name="Area">75885408</data>
</GMAPI>

PARAMETER

The DB_Unlock function takes only Area, which is the work area handle of the file
opened by the DB_Open function.

Integrating With GoldMine

160

RETURN VALUES

The DB_Unlock function returns the following XML:
<GMAPI SessionID="3" call="DB_Unlock">

<status code="1">Success</status>

</GMAPI>

DB_Unlock Code Attribute Values
Code Description
0 Error occurred

1 Success

Creating a Subset of Records
DB_Filter limits access to data in a GoldMine database by creating a subset of
records based on expression criteria. This function is similar to DB_Range. If
successfully called, all other functions (Top, Bottom, Skip, and so on) will respect the
filter.

SYNTAX

XML

<GMAPI call="DB_Filter" SessionID="1">
 <data name="Area">57919176</data>
 <data name="Filter">contact1->contact="Paul Redstone"</data>
</GMAPI>

NOTE

The Filter value above is XML encoded. Passing the value contact1->contact=”Paul
Redstone” through an XML Parser would handle the XML encoding automatically.

PARAMETERS

Area is the work area handle of the file opened by the GMW_DB_Open function.

Filter (or FilterExpr, Expr, Expression) is the valid Xbase expression. To remove the
filter, send an empty string as the second parameter.

RETURN VALUES

The DB_Filter function returns the following XML:
<GMAPI SessionID="1" call="DB_Filter">

<status code="1">Success</status>

</GMAPI>

DB_Filter Code Attribute Values
Code Description
0 Failure

1 Success

Integrating With GoldMine

 161

Limiting Search Scope
DB_Range activates the index in a table and sets a range of values to limit the scope
of data that GoldMine will search. This function is faster than DB_Filter.

The Min and Max values must be formatted the same as the selected index tag’s
expression.

If successfully called, all other functions (Top, Bottom, Skip, etc.) will respect the
range.

SYNTAX

XML

<GMAPI call="DB_Range" SessionID="1">
 <data name="Area">57917464</data>
 <data name="Min">A3042474804 WB9!JCat </data>
 <data name="Max">A4090244569#H4J*3Dav</data>
 <data name="Tag">Contacc"</data>
</GMAPI>

PARAMETERS

Area is the work area handle of the file opened by the GMW_DB_Open function.

Min specifies the minimum or lower value of the range.

Max specifies maximum or upper value of the range.

Tag is the index tag name.

RETURN VALUES

The DB_Range function returns the following XML:
<GMAPI SessionID="1" call="DB_Range">

<status code="1">Success</status>

</GMAPI>

DB_Range Code Attribute Values
Code Description
0 Error occurred

1 Success

Performing a Sequential Search
DB_Search performs a sequential search on a file.

SYNTAX

XML

<GMAPI call="DB_Search" SessionID="1">
 <data name="Area">60211128</data>
 <data name="Expression">contact1->contact="David Evans"</data>
</GMAPI>

Integrating With GoldMine

162

PARAMETERS

Area is the work area handle of the file opened by the GMW_DB_Open function.

Expr (or Expression) is the valid Xbase expression. For a record to be “found” this
expression must result as TRUE. Be sure to XML encode this, since the “>” in an
Xbase expression is an XML entity.

RETURN VALUES

The DB_Search function returns the following XML:
<GMAPI SessionID="1" call="DB_Search">

<status code="1">23</status>

</GMAPI>

The text of the code attribute will be the record number for dBase databases, and the
RecID for SQL databases.

DB_Search Code Attribute Values

Return Description
0 No match found

1 Success – the text of the attribute will be:
Xbase: RecNo of the matching record; SQL: RecID of the matching record

Moving to the First Record Match
DB_Seek positions to the first record matching the seek value. DB_SetOrder must be
called at some point prior to calling DB_Seek in order to set an index tag.

SYNTAX

XML

<GMAPI call="DB_Seek" SessionID="1">
 <data name="Area">60211128</data>
 <data name="Expression">A3100554903(ZUW)3Dav</data>
</GMAPI>

PARAMETERS

Area is the work area handle of the file opened by the GMW_DB_Open function.

Param is the value you will seek. This value must match the format of the index
expression for the currently active index.

RETURN VALUES

The DB_Seek function returns the following XML:
<GMAPI SessionID="1" call="DB_Seek">

<status code="1">Success- Exact match found.</status>

</GMAPI>

Integrating With GoldMine

 163

DB_Seek Return Values
Return Description

0 Error occurred

1 Exact match found. Cursor moved to record.

2 Exact match not found. Cursor placed at closest matching record.

3 EOF (end of file)

4 BOF (beginning of file)

Setting the Current Index Tag
DB_SetOrder sets the current index tag on the table.

SYNTAX

XML

<GMAPI call="DB_SetOrder" SessionID="1">
 <data name="Area">60211128</data>
 <data name="Tag">CONTACC</data>
</GMAPI>

PARAMETERS

Area is the work area handle of the file opened by the DB_Open function. Tag is the
name of the index tag to activate on the table. For a list of index names, see
“Database Structures” on page 377.

RETURN VALUES

The DB_SetOrder function returns the following XML:
<GMAPI SessionID="1" call="DB_SetOrder">

<status code="1">Success</status>

</GMAPI>

DB_SetOrder Code Attribute Values
Code Description
0 Error occurred

1 Index successfully activated

Positioning the Record Pointer
DB_Move positions the record pointer to a particular record in a data file.

SYNTAX

XML

<GMAPI call="DB_Move" SessionID="1">
 <data name="Area">60211128</data>
 <data name="Command">SKIP</data>
 <data name="Parameter">2</data>
</GMAPI>

Integrating With GoldMine

164

PARAMETERS

Area is the work area handle of the file opened by the GMW_DB_Open function.

Command is the command to execute. Each of these commands has an independent
function equivalent that is the preferred method to use. This function remains as a
legacy to its DDE counterpart.

Parameter is the scope or value for the command.
DB_Move Commands and Function Equivalents

Command Parameter Function Equivalents
TOP Not required DB_Top

BOTTOM

Not required DB_Bottom

SKIP Number of records to skip DB_Skip

GOTO Record Number/RecID DB_Goto

SEEK Search key value DB_Seek

SETORDER Index Tag DB_SetOrder

RETURN VALUES

The DB_Move function returns the following XML:
<GMAPI SessionID="1" call="DB_Move">

<status code="1">Exact match found. Cursor moved to record or index
activated.</status>

</GMAPI>

DB_Move Code Attribute Values
Code Description
0 Error occurred

1 Exact match found. Cursor moved to record or index-activated.

2 Exact match not found. Cursor placed at closest matching record.

3 Cursor at end-of-file (EOF)

4 Cursor at beginning-of-file (BOF)

Moving to a Specified Record
DB_Goto positions to a specific record in the table.

SYNTAX

XML

<GMAPI call="DB_Goto" SessionID="1">
 <data name="Area">60211128</data>
 <data name="RecordNumber">9Z2RME8(X%(!3\T</data>
</GMAPI>

PARAMETERS

Area is the work area handle of the file opened by the GMW_DB_Open function.

Integrating With GoldMine

 165

RecNo (or RecordNumber) specifies where the cursor should be placed, and is either
the Record number for Xbase or the RecID for SQL. The RecID works for Xbase as
well.

Integrating With GoldMine

166

RETURN VALUES

The DB_Goto function returns the following XML:
<GMAPI SessionID="1" call="DB_Goto">

<status code="1">Exact match found. Cursor moved to record or index
activated.</status>

</GMAPI>

DB_Goto Code Attribute Values
Return Description
0 Error occurred

1 Exact match found. Cursor moved to record or Index activated.

2 Exact match NOT found. Cursor placed at closest matching record.

3 Cursor at end-of-file (EOF)

4 Cursor at beginning-of-file (BOF)

Moving to the First Record
DB_Top positions to the first record in the table. This function should not be called
with an SQL database.

SYNTAX

XML
<GMAPI call="DB_Top" SessionID="1">
 <data name="Area">60211128</data>
</GMAPI>

PARAMETER

The DB_Top function takes only Area, which is the work area handle of the file
opened by the DB_Open function.

RETURN VALUES

The DB_Top function returns the following XML:
<GMAPI SessionID="1" call="DB_Top">

<status code="1">Success</status>

</GMAPI>

DB_Top Code Attribute Values
Code Description
0 Error occurred

1 Cursor moved to top of file

Moving to the Previous or Following Record
DB_Skip positions to the previous or following record in the table.

Integrating With GoldMine

 167

SYNTAX

XML

<GMAPI call="DB_Skip" SessionID="1">
 <data name="Area">60211128</data>
 <data name="Skip">3</data>
</GMAPI>

PARAMETERS

Area is the work area handle of the file opened by the DB_Open function.

Skip specifies the number records to skip. This value can be positive to move
forward in the table or negative to move backwards.

RETURN VALUES

The DB_Skip function returns the following XML:
<GMAPI SessionID="1" call="DB_Skip">

<status code="1">Success</status>

</GMAPI>

DB_Skip Code Attribute Values
Return Description
0 Error occurred

1 Cursor successfully moved

3 Cursor at end-of-file (EOF)

4 Cursor at beginning-of-file (BOF)

Moving to the Last Record
DB_Bottom positions to the last record in the table.

SYNTAX

XML
<GMAPI call="DB_Bottom" SessionID="1">
 <data name="Area">60211128</data>
</GMAPI>

PARAMETER

The DB_Bottom function takes only Area, which is the work area handle of the file
opened by the DB_Open function.

RETURN VALUES

The DB_Bottom function returns the following XML:
<GMAPI SessionID="1" call="DB_Bottom">

<status code="1">Success</status>

</GMAPI>

Integrating With GoldMine

168

DB_Bottom Code Attribute Values
Code Description
0 Error occurred

1 Cursor positioned on the last record in the table

Seeking a Record
DB_QuickSeek wraps several other database functions to provide a quick and easy
way to seek a record in the database.

SYNTAX

XML

<GMAPI call="DB_QuickSeek" SessionID="1">
 <data name="Table">Contact1</data>
 <data name="Index">CONTACC</data>
 <data name="SeekValue">A3100554903(ZUW)3Dav</data>
</GMAPI>

PARAMETERS

Table is the name of the table to be opened.

Index is the index to use for the table.

SeekValue is the seek expression to use.

RETURN VALUES

The DB_QuickSeek function returns the following XML:
<GMAPI SessionID="1" call="DB_QuickSeek">

<status code="1">9Z2RME8(X%(!3\T</status>

</GMAPI>

DB_QuickSeek Code Attribute Values

Return Description
-2 Invalid Index

-1 Invalid table

0 Failure

1 Success – The text will be the recid of the found record.

Reading a Field Value
DB_QuickRead wraps several other database functions to provide a quick and easy
way to read a field value from a record in the database.

Integrating With GoldMine

 169

SYNTAX

XML

<GMAPI call="DB_QuickRead" SessionID="1">
 <data name="Table">Contact1</data>
 <data name="Recid">9Z2RME8(X%(!3\T</data>
 <data name="Field">Contact</data>
</GMAPI>

PARAMETERS

Table is the name of the table to be opened.

RecID (or RecordID) is the RecID of the record from which to read.

Field (or FieldName) is the Field name to return.

RETURN VALUES

The DB_QuickRead function returns the following XML:

DB_QuickRead Code Attribute Values

Return Description
-4 Invalid Fieldname

-3 RecID not found

-2 Invalid RecID

-1 Invalid table

0 Failure

1 Success

Replacing a Field Value
DB_QuickReplace wraps several other database functions to provide a quick and
easy way to replace a field value from a record in the database.

SYNTAX

XML

<GMAPI call="DB_QuickReplace" SessionID="1">
 <data name="Table">Contact1</data>
 <data name="Recid">9Z2RME8(X%(!3\T</data>
 <data name="Field">Key3</data>
 <data name="Data">Updated by XML API</data>
 <data name="AddTo">0</data>
</GMAPI>

PARAMETERS

Table is the name of the table to be opened.

RecID (or RecordID) is the RecID of the record to be updated.

Field (or FieldName) is the Field name to replace.

Value (or Data, NewValue) is the value to store in the field.

Integrating With GoldMine

170

AddTo (or Append) indicates if the value data is to be appended (1) or replaced
(0=default).

RETURN VALUES

The DB_QuickReplace function returns the following XML:
<GMAPI SessionID="1" call="DB_QuickReplace">

<status code="1">Success</status>

</GMAPI>

DB_QuickReplace Code Attribute Values
Return Description
-4 Invalid Fieldname

-3 RecID not found

-2 Invalid RecID

-1 Invalid table

0 Failure

1 Success

Returning Calendar Data
The ReadSchedule call returns all calendar data for a given RecID.

SYNTAX

XML
<GMAPI call="ReadSchedule" SessionID="XXX">
 <data name="RecID">BUAQI6O!* C8]WV</data>
</GMAPI>

RETURN VALUES

The ReadSchedule call returns the following XML:
<GMAPI call="ReadSchedule" SessionID="XXX">
 <status code="1">Success</status>
 <data name="Return">
 <data name="ACCOUNTNO">A5040658567& _:+]Mat</data>
 <data name="ACTVCODE"/>
 <data name="COLORCODE">0</data>
 <data name="CONTACT">Matthew W & Kathleen Blacklock</data>
 <data name="DURATION"> 30</data>
 <data name="LINK">1</data>
 <data name="LOPRECID"> UAQI6O((X$]]WV</data>
 <data name="NOTIFY">0</data>
 <data name="ONDATE">20060530</data>
 <data name="ONTIME"> 7:00am </data>
 <data name="PRIVATE">0</data>
 <data name="RECID">BUAQI6O!* C8]WV</data>
 <data name="RECTYPE">C</data>
 <data name="REF"/>
 <data name="RSVP">0</data>
 <data name="UPDATERELATED">0</data>
 <data name="USERID">GUY</data>
 </data>
</GMAPI>

Integrating With GoldMine

 171

For Sales-type records, The ReadSchedule call returns more data:
<GMAPI call="ReadSchedule" SessionID="XXX">
 <status code="1">Success</status>
 <data name="Return">
 <data name="ACCOUNTNO">A5040658567& _:+]Mat</data>
 <data name="ACTVCODE">AA </data>
 <data name="AMOUNT">1110</data>
 <data name="COLORCODE">0</data>
 <data name="CONTACT">Matthew W & Kathleen Blacklock</data>
 <data name="DURATION"> 30</data>
 <data name="LINK">1</data>
 <data name="LOPRECID"> UAQR0L&6K]O]WV</data>
 <data name="NOTIFY">0</data>
 <data name="ONDATE">20060530</data>
 <data name="ONTIME"/>
 <data name="POTNSALE">1110</data>
 <data name="PRIVATE">0</data>
 <data name="PROBSALE">30</data>
 <data name="RECID">BUAQR0L(?B&+]WV</data>
 <data name="RECTYPE">S</data>
 <data name="REF">Johnny Apple Sauce! </data>
 <data name="RSVP">1</data>
 <data name="UNITSSALE">2</data>
 <data name="UPDATERELATED">0</data>
 <data name="USERID">GUY</data>
 </data>
</GMAPI>

Updating Sync Logs
The GoldMine XML API provides a method to update GoldMine synchronization
logs whenever an external application updates GoldMine data.

The GoldMine XML API offers the following synchronization functions:

UpdateSyncLog: Updates the sync log file

ReadImpTLog: Imports a prepared TLog import file

NewRecID: Gets a new RecID

SyncStamp: Converts sync stamp to time and converts time back to sync stamp

Updating the Sync Log File

SYNTAX

XML

<GMAPI call="UpdateSyncLog" SessionID="1">
 <data name="Table">Contact1</data>
 <data name="RecID">9NDJRJN(EQ[)JW:</data>
 <data name="Field">Key3</data>
 <data name="Action">U</data>
</GMAPI>

PARAMETERS

Table specifies the table name (such as “Contact1”) or the table ID.

Integrating With GoldMine

172

RecID specifies the RecID of the updated record: the correct RecID must be passed,
and the RecID value must be exactly 15 characters long.

Field specifies the name of the field that has changed. This parameter is only relevant
when the Action parameter is U. Field is ignored when Action is N or D.

Action should be N when a new record has been appended, D when a record has
been deleted, or U when a field in a record has been updated.

RETURN VALUES

The UpdateSyncLog function returns the following XML:
<GMAPI SessionID="1" call="UpdateSyncLog">

<status code="4">Field TLog entry created.</status>

</GMAPI>

UpdateSyncLog Code Attribute Values
Return Description
0 Error

1 New TLog entry created

2 New TLog entry updated

4 Field TLog entry created

8 Field TLog entry updated

16 Deleted record TLog entry created

32 New TLog Entry removed

Importing a Prepared TLog Import File
ReadImpTLog reads the status of a TLog import file, then deletes the import file
when the process is completed.

SYNTAX

XML

<GMAPI call="ReadImpTLog" SessionID="1">
 <data name="File">c:\tlogs\mytlog.dbf</data>
 <data name="Delete">1</data>
</GMAPI>

PARAMETERS

File specifies the import file name—see below for the import file structure.

Delete specifies to delete the import file when the process has completed.

RETURN VALUES

ReadImpTLog function returns the following values in the code attribute:
ReadImpTLog Code Attribute Values

Code Description
0 Failure

Integrating With GoldMine

 173

Code Description
1 Success -- Text is total number of imported TLog records

NOTES

LoadAPI or LoadBDE must be called before calling ReadImpTLog for the first time.
Your application can determine when the imported process completes by setting the
Delete parameter to 1, and noting when the import file is deleted. The TLog import
must have the structure shown in the following table.
TLog Import Structure

Field Name Type Length
Table ID char 10

RecID char 15

Field ID char 10

Action ID char 1

Getting a New Record ID
NewRecID returns a new RecID in the text of the code attribute of the returned XML.

SYNTAX

XML
<GMAPI call="NewRecID" SessionID="1">
 <data name="User">KEVIN</data>
</GMAPI>

PARAMETERS

User specifies the GoldMine user name.

RETURN VALUE
<GMAPI SessionID="1" call="NewRecID">

<status code="1">AQN8HK0 I9& =$R</status>

</GMAPI>

NOTES

The resulting Recid is XML encoded because it contains an XML entity. Reading the
text of the code attribute via an XML Parser would return the correctly XML
unencoded RecID.

Converting the Sync Stamp
SyncStamp converts Sync Stamp to time format and back.

SYNTAX

XML
<GMAPI call="SyncStamp" SessionID="1">
 <data name="Stamp">19980201:19:01:30</data>
</GMAPI>

Integrating With GoldMine

174

PARAMETERS

When the Stamp parameter is exactly 17 characters long, formatted as Date:Time in
form of CCYYMMDD:HH:MM:SS, the return string in the code attribute’s text is in
TLog timestamp format, exactly seven characters long. When the Stamp parameter is
seven characters long formatted as a TLog timestamp, the return string in the code
attribute’s text is formatted as CCYYMMDD:HH:MM:SS.

RETURN VALUES

The SyncStamp function returns the following example XML:
<GMAPI SessionID="1" call="SyncStamp">

<status code="1">5V1QM50</status>

</GMAPI>

SyncStamp Code Attribute Values
Code Description
0 Failure

1 Success

NOTES

An empty return string indicates an error.

Using MSXML to Handle GoldMine API XML
MSXML is just one DOM parser that can be used to format and parse the XML to pass to the
GoldMine XML API. This section will give a brief tutorial of functions that can be used to
handle the GoldMine XML document. It does not comprehensively document MSXML;
please refer to Microsoft’s Developer Network (MSDN) for complete MSXML
documentation. Another parser that is available is Xerces.

Getting Started
The examples in this section will use functions and syntax from Microsoft XML 4.0
and Visual Basic 6.0. Include a reference to Microsoft XML, v. 4.0 in your
development project. To create a document reference, use the following code:

Dim doc As DOMDocument40

Set doc = New DOMDocument40

The XML document is now ready to be composed.

Defining the Root Element
The root element for the GoldMine XML API is GMAPI. The code below sets this
value:

Integrating With GoldMine

 175

Dim xmlIn As String

xmlIn = "<GMAPI/>"

Dim doc As DOMDocument40

Set doc = New DOMDocument40

doc.loadXML xmlIn

Dim elRoot As IXMLDOMElement

Set elRoot = doc.documentElement

Creating an IXMLDOMElement object and setting it to doc.documentElement
provides a reference to the root element of the document. This allows for easy
updating to that element later on.

Setting Attributes
The attributes of an element define a specific setting or provide additional
information to an element. Attributes appear in an element’s start tag and are in a
name/value pair format. The GoldMine XML API typically expects two attributes
for the root element: call and sessionid.

To set an attribute, use the SetAttribute method in the documentElement object. The
following code assumes the elRoot object defined above.

elRoot.setAttribute "call", "DB_Open"

elRoot.setAttribute "SessionID", sSessionID

Referencing an Attribute
The call attribute for the GMAPI root element will likely need to be changed many
times in the course of your application. A reference to this attribute can be obtained
by calling the following code:

Dim att As IXMLDOMAttribute

Set att = elRoot.selectSingleNode("@call")

Now the GoldMine XML API call can be changed easily.
att.Text = "DB_Append"

Be sure to set all references to Nothing (or Null) before exiting your application!
Set elRoot = Nothing

Set doc = Nothing

Set att = Nothing

Integrating With GoldMine

176

Creating Child Elements
To specify parameters of the GoldMine XML API function calls, a “data” element
needs to be created for each parameter. Each data element has one attribute titled
“name”. The value of the parameter is stored as the text value of the attribute.
Following is a Visual Basic example showing a subroutine that sets a parameter for
the GoldMine XML API:

Public Sub SetParameter(doc As DOMDocument40, root As IXMLDOMElement,
sParamName As String, ByVal sValue As String)

 Dim tempEL As IXMLDOMElement

 ‘Create the element and assign to a reference

 Set tempEL = doc.createElement("data")

 ‘Set the attribute with the sParamName value being the name of
the ‘parameter

 tempEL.setAttribute "name", sParamName

 ‘Specify the value of the parameter

 tempEL.Text = sValue

 ‘Append the child element to the root

 root.appendChild tempEL

 Set tempEL = Nothing

End Sub

The above subroutine can now be called to set many parameters for a function. The
example below assumes the document, root element and attribute objects created in
the previous section.

att.Text = "DB_Replace"

SetParameter doc, elRoot, "Field", "Contact"

SetParameter doc, elRoot, "NewValue", "XML Contact"

SetParameter doc, elRoot, "Append", "0"

Executing the XML Document
The GoldMine XML API exposes a single method to execute the XML document:
ExecuteCommand. The following subroutine wraps the calls necessary to execute
the API’s XML:

Public Sub ExecuteCommand(doc As DOMDocument40)

 Dim strOut As String

 Dim GMAPI As GMXMLAPI.GoldMineData

Integrating With GoldMine

 177

 Set GMAPI = New GMXMLAPI.GoldMineData

 strOut = GMAPI.ExecuteCommand(doc.xml)

 ‘xmlout is a global string variable. This can be changed to be
‘returned by the function call.

 xmlout = strOut

 Set GMAPI = Nothing

End Sub

Reading the Results
The GoldMine XML API returns the results of the function calls by adding an
element called status with an attribute called “code”. In addition, data returned by
the call, such as contact information, is returned as child elements.

Reading the Code Attribute
After executing an XML API command, the resulting XML document contains a
status element with a code attribute. The value of this attribute represents the return
value of the function executed. The text value of the code attribute is a description of
the return value, typically providing a meaningful explanation of an error code. The
following subroutine returns the code as the return value and the textual description
as an optional output parameter:

Public Function GetReturnVal(Optional sDescription As String) As
Integer

 Dim DomDoc As DOMDocument40

 Set DomDoc = New DOMDocument40

 ‘xmlout is a global variable that contains the returned XML from
 ‘the ExecuteCommand subroutine defined in the above section

 DomDoc.loadXML xmlout

 Dim root As IXMLDOMElement

 Set root = DomDoc.documentElement

 If root.Attributes.length > 0 Then

 Dim status As IXMLDOMNode

 Set status = root.childNodes(0)

 If status.Attributes(0).baseName = "code" Then

 sDescription = status.Text

 GetReturnVal = status.Attributes(0).Text

 End If

 End If

 Set DomDoc = Nothing

Integrating With GoldMine

178

 Set root = Nothing

 Set status = Nothing

End Function

Reading the Returned Data
The GoldMine XML API returns an element titled “Return” containing the data
elements returned by the executed command. The best way to access the individual
elements using MSXML is to call selectsingleNode and specify an XPath expression
to designate the desired element. SelectsingleNode returns a reference to the
element requested. To access a further-nested element, call selectsingleNode again
from the originally returned element. The following code loads an XML document
returned from executing the ReadRecord command. It then obtains a reference to
the “Return” element, followed by requesting the “CONTACT” element from the
“Return” element.

Dim elReturnData As IXMLDOMElement

Dim elFieldValue As IXMLDOMElement

Dim docReturned As DOMDocument40

Dim elRootReturned As IXMLDOMElement

Set docReturned = New DOMDocument40

docReturned.loadXML xmlReturned

Set elRootReturned = docReturned.documentElement

Set elReturnData =
elRootReturned.selectSingleNode("data[@name='Return']")

If Not elReturnData Is Nothing Then

Set elFieldValue =
elReturnData.selectSingleNode("data[@name='CONTACT']")

 If Not elFieldValue Is Nothing Then _

 txtContactName = elFieldValue.Text

End If

Set elReturnData = Nothing

Set elFieldValue = Nothing

Set elRootReturned = Nothing

Set docReturned = Nothing

The XPath expression is case sensitive. Typically, all field name elements will be in
ALL CAPS. Other element names may not be formatted in that manner. The case
format of the element name can be checked by inspecting the returned XML during
the design phase of your application.

Integrating With GoldMine

 179

Accessing the Current GoldMine
Instance with COM

With the release of GoldMine 6.7, GoldMine acts as a COM Server. This new
functionality enables an application to interact with GoldMine without using DDE or
loading a dll. In addition, integrating your application with GoldMine using the
COM Server ability does not require a separate instance of Borland Database Engine
(BDE) to be loaded. Furthermore, utilization of the COM server in GoldMine allows
the integrating application to control GoldMine’s user interface to a much greater
extent than the legacy DDE server allowed.

Note: As of GoldMine Version 7.0, the Borland Database Engine is no longer used.
References to BDE in this chapter apply to integrations developed in
GoldMine Version 6.7.

All COM server class methods are executed via XML. For information on using
Microsoft XML for creating XML documents to use with the GoldMine COM Server,
please see “Using MSXML to Handle GoldMine API XML” on page 174.

There are 3 classes exposed by the COM server:

1. GoldMine.GoldMineData – This class has methods that are exactly as in the
GoldMine XML API described in Chapter 4, Working with the XML API.
However, this class does not contain any functions for loading BDE or logging in,
as they are unnecessary with a running instance of GoldMine. Using the
GoldMine.GoldMineData class of the COM Server will alleviate the
SharedMemLocation BDE setting issues with loading a second BDE instance.

Integrating With GoldMine

180

Since these commands are an exact duplicate to the GoldMine XML API
commands, they will not be documented in this chapter. For information on
using the commands accepted in this class, please see Chapter 4, Working with
the XML API.

2. GoldMine.UI – This class has methods and events that replace all current DDE
functionality and to control the GoldMine user interface.

3. GoldMine.RecObj – This class has events for notifying client applications of
Record object changes.

Getting Started
To access the GoldMine COM Server, add a reference to the GoldMine 6.7 Type
Library to your project. Objects for each of the classes can now be created.

Dim WithEvents GMUI As GoldMine.UI

Dim WithEvents RcOb As GoldMine.RecObj

Dim GMData As GoldMine.GoldMineData

In addition, your application needs to be COM Exception aware.

For instance if a login fails, then a COM Exception of type AccessDenied is passed to
your application.

Executing Commands
The GoldMine.UI and GoldMine.GoldMineData classes only have one exposed
method:
ExecuteCommand([in]BSTR xmlIn, [out, retval] BSTR* xmlOut)

To use this method, build your XML document using a DOM parser, such as
MSXML, then pass the resulting document to the ExecuteCommand method.

strOut = GMUI.ExecuteCommand(txtXMLIn.Text)

If your application is developed in VB, C#, VB.NET, or Delphi the call will have the
same format as above.

StringVar = GMUI.ExecuteCommand(xmlIN)

If your application is developed in C++, or another lower-level programming
language, the call will have the format of:

ExecuteCommand(xmlIn, xmlOut)

Integrating With GoldMine

 181

Logging In to GoldMine
Using the GoldMine COM Server requires that GoldMine is running on the
computer the client application is also running on. If GoldMine is not running, it
will be launched the first time a call is made to the GoldMine COM Server.
However, this will only bring GoldMine to the login screen. The GoldMine.UI and
GoldMine.GoldMineData classes both have a command to handle this, Login.
Following is example code for calling the Login command:

GMObj.ExecuteCommand("<GMAPI call=""Login""><data
name=""User"">MASTER</data><data
name=""Pass"">ACCESS</data></GMAPI>")

If GoldMine is already running, the COM server will return:
<GMAPI call="Login">

<status code="-31703">The call passed was not recognised as
valid.</status>

</GMAPI>

If the Login attempt was successful, the COM server will return:
<GMAPI call="Login">

<status code="1">Succeeded.</status>

</GMAPI>

If invalid login information is passed, a COM Exception of type AccessDenied is
returned to the client application.

GoldMine.UI Class
The UI class of the GoldMine COM Server provides identical functionality to the
legacy DDE Server. If you are familiar with using the DDE commands, porting to
the COM Server will be natural. There is additional functionality in the COM Server
that allows control of the GoldMine user-interface with commands such as
launching menu items, being notified when a window is being launched, and
manipulating controls.

Accessing Data Files
GoldMine.UI provides a complete set of commands that allow low-level access to the
data files. These functions allow you to:

• Open particular data files,

• Query the values of the fields in the records in the data files,

• Add records to the files, and

• Replace data in the records.

Integrating With GoldMine

182

This suite of functions is usually used for database applications that need varied
access to GoldMine data.

Adding an Empty Record

Syntax

<GMAPI call=”Append”>
<data name=”Area”>1</data>

</GMAPI>

The Append function is used to add an empty record to a GoldMine data file. Before
using Append, you must open a data file using the Open function. After executing
the Append function, the record pointer is positioned at the new empty record, and
the record is locked and ready to accept field replacements.

When a CONTACT1 record is appended, GoldMine automatically propagates the
new record with the appropriate ACCOUNTNO and CREATEBY values. For all
other records, you must replace the ACCOUNTNO field with the value from the
CONTACT1 record with which the new record is to be linked. For records that
require remote synchronization initialization, GoldMine will automatically
propagate the value of the RECID field when these records are appended.

Parameters
The Append function accepts one parameter, the work area handle of the file to
Append. The work area handle is returned by the Open file when the file is opened.

Return Value
Xbase: The Append function returns the record number of the new record, or 0 if the
file could not be locked.

SQL: The Append function returns the record ID.

RETURNED XML
<GMAPI call="Append">

<status code="1">72</status>

</GMAPI>

Closing an Opened File

Syntax

<GMAPI call=”Close”>
<data name=”Area”> 1</data>

</GMAPI>

The Close function is used to release a previously OPENed file when processing is
complete. When access is complete, a file must be CLOSEd to release memory used
by GoldMine to maintain database work areas.

Integrating With GoldMine

 183

PARAMETERS

The Close function accepts one parameter, Area—the work area handle of the file to
close. The Open file returns the work area handle when the file is opened.

RETURN VALUE

The Close value returns 1 if the function was able to successfully close the work area,
0 if an invalid work area handle was passed.

RETURNED XML

<GMAPI call="Close"><status code="1">Success</status></GMAPI>

Deleting the Current Record

Syntax

<GMAPI call=”Delete”>
<data name=”Area”>1</data>

</GMAPI>

The Delete function deletes the current record in the specified work area. The record
pointer is not advanced to the next record.

PARAMETERS

The Delete function takes one parameter, Area—the work area value obtained from
the Open function.

RETURNED XML
<GMAPI call="Delete">

<status code="1">Success</status>

</GMAPI>

Creating a Subset of Records

Syntax

<GMAPI call=”Filter>
<data name=”Area”>1</data>

<data name=”Expression”>Xbase Expression</data>

</GMAPI>

The Filter function limits access to data in a GoldMine database by creating a subset
of records based on expression criteria.

PARAMETERS

The Filter function takes two parameters.

Area: the work area handle of the file that you want to read. The Open function
provides this value when the data file is opened.

Integrating With GoldMine

184

Expression: a valid Xbase expression. Referencing a table and field in an Xbase
expression requires the use of the “>” character. Since this is an XML entity, be sure
to build this XML document through a DOM parser to XML encode the elements.
See Using MSXML to Handle GoldMine API XML on page 174 for more information.

To remove the filter from the database, use a Filter function with an empty string,
such as:

<GMAPI call=”Filter”>

<data name=”Area”>1</data>

<data name=”Expression”/>

</GMAPI>

Checking for an Xbase or SQL Table

Syntax

<GMAPI call=”IsSQL”>
<data name=”Area”>1</data>

</GMAPI>

The IsSQL function returns the table type (Xbase or SQL) that is open in a work area.
Using this command, you can determine the most appropriate method to retrieve
information when working with DataStream. For example, when your routine starts,
you can open Contact1 and Cal, issue an IsSQL command to determine the GoldDir
and CommonDir database types, and then close both work areas. You can then send
the appropriate DataStream calls.

PARAMETERS

The IsSQL function takes work area as the only parameter, Area.

RETURN VALUES

IsSQL returns 1 for an SQL database table, or 0 for an Xbase file.

RETURNED XML
<GMAPI call="IsSql">

<status code="0">The open file is xBase.</status>

</GMAPI>

Moving to a Specified Record

Syntax

<GMAPI call=”Move”>
<data name=”Area”> 87494472</data>

<data name=”Command”>COMMAND</data>

<data name=”Parameter”>PARAMETER</data>

</GMAPI>

Integrating With GoldMine

 185

The Move function will position the record pointer to a particular record in a data
file. Before using Move, you must open a data file using the Open function.

PARAMETERS

The Move function requires either two or three parameters.

Area: the work area handle of the file whose record pointer you want to position.
The Open function provides this value when the data file is opened.

Command: the name of the Move subfunction that you want to perform.

Parameter: Depending on the subfunction, a third parameter can be required.
The following table lists the Move subfunctions and the requirements for the third
parameter:
Valid Move Subfunctions

Subfunction Description 3rd Parameter
TOP Move to first logical record Not required

BOTTOM Move to last logical record Not required

SKIP Skip records Optional, records to skip

GOTO Go to a specific record Record number (Xbase), Record ID (SQL)

SEEK Seek a specific record by key Search key value

SETORDER Select an index Index name

Top Positions the record pointer at the first logical record according to the current index
order. For example, if the data file open in the selected work area is CONTACT1.DBF,
and the index order is set to Company, a call to TOP will result in the record pointer
being positioned at a record with a company name, such as AAA Cleaners.

Bottom Positions the record pointer at the last logical record according to the current index
order. For example, if the data file open in the selected work area is CONTACT1.DBF,
and the index order is set to Company, a call to BOTTOM will result in the record
pointer being positioned at a record with a company name, such as Z-best Bakery.

Skip Moves the record pointer record by record. If SKIP is called without the third
parameter, it will move the record pointer to the next logical record according to the
current index order. If SKIP is called with a string numeric as the third parameter, the
record pointer will be moved forward by the indicated number if the value is positive, or
backward if the value is negative. Negative numbers must be passed in quotation
marks, for example “-1”.

Goto Positions the record pointer at the record number (Xbase) or record ID (SQL) specified
by a string numeric passed as the third parameter.

Seek Attempts to locate a record in the data file with an index key that matches the string
passed as the third parameter. Partial key searches are allowed; GoldMine will
position the record pointer at the record with the key that most closely matches the
passed value.

Integrating With GoldMine

186

Setorder

Selects an active index for ordering and SEEKing the data file. See “Database
Structures” on page 377 for the appropriate values and collating sequence for each
data file index.

If an invalid index is selected for the data file, none of the MOVE subfunctions will
operate properly.

RETURN VALUE

The Move function can return several values.
Move Return Values

Return Description
0 Error occurred

1 Record pointer successfully moved, or index selected

2 Exact match not found, pointer positioned at closest match

3 Record pointer positioned at end-of-file (EOF)

4 Record pointer positioned at beginning-of-file (BOF)

An error can be returned under any of the following conditions:

• Invalid work area handle is passed to the function.

• Invalid subfunction is passed.

• Out-of-range record number is passed.

• Nonnumeric value is passed as a third parameter when a numeric value
is expected.

RETURNED XML
<GMAPI call="MOVE">

<status code="1">1</status>

</GMAPI>

Opening a Data File

Syntax
<GMAPI call=”Open”>
 <data name=”Filename”>CONTACT1</data>
</GMAPI>

The Open function is used to open a GoldMine data file for processing by another
application. This function must be called before calling any GoldMine.UI data
functions that work with an individual data file. It is not necessary to use this
function when calling the RecordObj function or user-interface control functions.

Integrating With GoldMine

 187

PARAMETERS

The Open function takes one parameter, Filename. The following values are valid for
this parameter:
Open Valid Parameters

File Description
CAL Calendar activities file

CONTACT1 Primary contact information file

CONTACT2 Primary contact information file

CONTGRPS Groups file

CONTHIST History records file

CONTSUPP Supplementary records file

INFOMINE InfoCenter file

LOOKUP Lookup file

MAILBOX E-mail Center mailbox file

OPMGR Opportunity Manager file

PERPHONE Personal Rolodex file

RESOURCE Resources file

SPFILES Contact files directory

RETURN VALUE

The Open function returns an integer value representing the handle to the file’s work
area. This value is required for all subsequent access to the file. If the file could not
be opened, or an invalid parameter is passed, the function will
return 0.

RETURNED XML

<GMAPI call="Open"><status code="1">87732928</status></GMAPI>

Limiting GoldMine Search Range

Syntax

<GMAPI call="Range">
 <data name="Area">87732928</data>
 <data name="Min">Mark Durrant</data>
 <data name="Max">Paul Redstone</data>
 <data name="Tag">CONTNAME</data>
</GMAPI>

The Range function activates the index in a table and sets a range of values to limit
the scope of data that GoldMine will search.

PARAMETERS

The Range function requires four parameters.

Integrating With GoldMine

188

Area: the work area handle of the file that you want to read. The Open function
provides this value when the data file is opened.

Min: the minimum value of the range.

Max: the maximum value of the range.

Tag: the tag that corresponds to the index file. For details about tags, see “Database
Structures” on page 377.

RETURNED XML
<GMAPI call="Range">

<status code="1">Success</status>

</GMAPI>

Syntax

<GMAPI call="Query">
 <data name="Area">87732928</data>
 <data name="SQL">select recid from contact1 where state=”MI”</data>
</GMAPI>

The Query function limits the set of records that can be accessed to the result set
from the specified SQL query. After calling the Query command, issue a MOVE
command to move the record pointer into the result set from the Query (by calling
TOP for example).

PARAMETERS

Area: the area value returned by the Open command.

SQL: the SQL query to send to the server.

RETURNED XML
<GMAPI call="Query"><status code="1">Success</status></GMAPI>

Reading a Field Value

Syntax

<GMAPI call="Read">
 <data name="Area">87624560</data>
 <data name="Field">Key1</data>
</GMAPI>

The Read function is used to query a data file for the value of a field. Before using
Read, you must open a data file using the Open function. In addition, you will
probably want to position the record pointer to the record you want to query by
using the Move function.

PARAMETERS

The Read function requires two parameters.

Area: The first parameter is the work area handle of the file that you want to read.
The Open function provides this value when the data file is opened.

Integrating With GoldMine

 189

Field: The second parameter is the name of the field in the data file whose value you
want to query. You will normally pass only a single field name, such as CONTACT
as the second parameter. However, if you pass a field expression, such as
“COMPANY + CONTACT” GoldMine will attempt to evaluate the expression and
return the value of the expression.

RETURN VALUE

The Read function returns a character string containing the value in the specified
field, or the value of the specified expression. An invalid work area handle, an
invalid field being passed, or an expression that GoldMine could not evaluate can
cause errors.

RETURNED XML
<GMAPI call="Read">

<status code="1">Client Prospect</status>

</GMAPI>

Checking the Current Record Number or Record ID

Syntax
<GMAPI call="Recno">
 <data name="Area">87624560</data>
</GMAPI>

Xbase: RecNo function is used to determine current record number position.

SQL: RecNo function is used to determine the record ID.

PARAMETERS

The RecNo function accepts one parameter, Area—the work area handle of the file.
The Open function returns the workarea.

RETURN VALUE

The RecNo function returns the current record number position, 0 if an invalid work
area handle was passed.

RETURNED XML
<GMAPI call="Recno">

<status code="1">21</status>

</GMAPI>

Changing a Field Value

Syntax

<GMAPI call="Replace">
 <data name="Area">87637440</data>
 <data name="Field">contact</data>
 <data name="NewValue">Reuben Corazza</data>
 <data name="Append">0</data>
</GMAPI>

Integrating With GoldMine

190

The Replace function is used to change the value in a particular field in one
GoldMine data file. Before using Replace, you must open a data file using the Open
function. In addition, you will probably want to position the record pointer to the
record you want to change either by using the Move function, or by adding a new
record with the Append function.

After executing the Replace function, GoldMine will update the specified field with
the new value, and update the appropriate remote synchronization data structures
to indicate that the field was changed.

In a network environment, GoldMine automatically locks the record before
performing the replacement. The record is not automatically unlocked, allowing for
fast multiple field replacements. The record is automatically unlocked when a Close,
Move, or Unlock command is issued on the work area.

PARAMETERS

The Replace function requires three parameters and has an optional fourth
parameter.

Area: The first parameter is the work area handle of the file in which you want to
perform the replacement. The Open function provides this value when the data file
is opened.

Field: The second parameter is the name of the field to be replaced. See “Database
Structures” on page 377 for information on the name of fields in each GoldMine data
files. If you attempt to replace a field that does not exist in the file open in the
specified work area, the Replace function will fail.

NewValue: The third parameter is the value to replace. The replace value must be a
string value. If the replacement field is a date or numeric field, GoldMine will
convert the string data to the appropriate data type prior to performing the
replacement.

Append: The fourth parameter will add data instead of replacing data. Using this
parameter, you can insert large amount of text into a notes field. To append instead
of replace incoming data from the third parameter, pass 1 as the fourth parameter.
You can set up a loop to feed notes in 256-byte segments to override the 256-byte
limit for inbound DDE requests.

RETURN VALUE

If the file was replaced, the Replace function returns 1.
<GMAPI call="Replace"><status code="1">Success</status></GMAPI>

If the field could not be replaced, 0 is returned. The failure can be caused under any
of the following conditions:

• Invalid parameter, such as an invalid work area handle.

• Invalid field name.

• Record already locked by another user.

Integrating With GoldMine

 191

Performing a Sequential Search

Syntax

<GMAPI call="search">
 <data name="area">87675752</data>
 <data name="expression">contact="Paul Redstone"</data>
</GMAPI>

The Search function is used to perform a sequential search on a file. Unlike Move,
Search scans the table, one record at a time, looking for a record that satisfies the
search condition. The search condition can be any Xbase expression that GoldMine
understands, but is usually an expression that tests the value of one or more fields in
the file. When a match is found, the record pointer is located at the matching record.

Search starts with the record that immediately follows the current record (the next
logical record according to the selected index order) and continues until a match is
found or the end of file is encountered. Because of this, Search can be called
repeatedly to return a list of records that satisfy the search condition.

PARAMETERS

The Search function takes three parameters.

Area: the work area handle of the file you want to search. The Open function
provides this value when the data file is opened.

Expression: the search expression, such as “CITY=‘Los Angeles’”

RETURN VALUE

The Search function can return several values.
Search Return Values

Return Description
0 Error occurred or match could not be found

>0 Match found; return value indicated current physical record number (Xbase)
or record ID (SQL)

An error can be returned if an invalid work area handle is passed to the function, or
if an invalid search condition is passed.

RETURNED XML
<GMAPI call="search">

<status code="1">1</status>

</GMAPI>

Unlocking a Record

Syntax
<GMAPI call="Unlock">
 <data name="Area">87675752</data>
</GMAPI>

The Unlock function unlocks a record previously locked by a call to either Append

Integrating With GoldMine

192

or Replace. GoldMine does not specifically release a lock on a record until you call
Unlock, allowing you to perform multiple field replacements quickly. Before using
Unlock, you must open a data file using the Open function.

After calling Unlock, GoldMine will also update the remote synchronization data
structures to indicate the date and time that the record was modified.

PARAMETERS

The Unlock function accepts one parameter, Area—the work area handle of the file
to close. The work area handle is returned by the Open file when the file is opened.

RETURN VALUE

The Unlock function returns 1 if the record was unlocked, or 0 if an invalid work
area handle was passed to the function.

RETURNED XML
<GMAPI call="Unlock">

<status code="1">Success</status>

</GMAPI>

Accessing Contact Records
For specific applications that need access to the GoldMine contact database at the
logical level, the RecordObj function is the preferred access method. Unlike the low-
level GoldMine.UI functions, the RecordObj function maintains all of the
relationships between the various GoldMine files. This access method is most often
used for document merging functions such as word processor mail merges or
placing information into a spreadsheet.

Linking GoldMine Fields with an External Application

Syntax

<GMAPI call="RecordObj">
 <data name="Command">skip</data>
 <data name="Argument">3</data>
</GMAPI>

The RecordObj function is a specialized function designed to link fields in a
document application, such as a word processor or spreadsheet. Using RecordObj,
an application can access the contact record in a high-level fashion, rather than
opening the CONTACT1.DBF and CONTACT2.DBF files using Open.

Calling RecordObj within a program is equivalent to viewing and manipulating the
contact record within GoldMine. The calling program can control the record pointer
in the contact record much the same way a GoldMine user can move the record
pointer. In fact, RecordObj can be called in such a way as to create a minimized
contact record in the GoldMine work area display.

The primary differences between using Open, Move, and Read to access contact
information and using RecordObj are described in the following table.

Integrating With GoldMine

 193

Differences in Accessing Contact Information
Using Open, Move, Read Using RecordObj
Any filter or group that is active on a contact
record in GoldMine is ignored when files are
accessed using Open and Move

RecordObj can work in conjunction with a filter or
group. Any records that do not match the filter
expression, or are not members of the group, are
skipped

The only way to maintain the relationship
between the CONTACT1 and CONTACT2
files, is to manually reposition CONTACT2
whenever the record pointer is moved in
CONTACT1.DBF.

Automatically maintains the relationship between
CONTACT1 and CONTACT2 , and other contact
information such as history.

 RecordObj does not contain a method to read
specific fields from the database. It is expected that
the application will use the Macro or Expr functions
to query information from the current contact
record, and use RecordObj function calls only to
position the record pointer.

 When RecordObj is used to move the record
pointer, the contact record screen in GoldMine is
updated. To receive notification that the screen
has changed, use the GoldMine.RecordObj class
to receive events notifying of a record change, a
tab clicked, or a contact1 or contact2 field being
changed.

PARAMETERS

The RecordObj function requires either one or two parameters.

Command: the name of the RecordObj subfunction that you want to perform.

Argument: Depending on the subfunction, a second parameter can be required. The
following table lists the RecordObj subfunctions and the requirements of the second
parameter.
Valid RecordObj Functions

Subfunction Description Argument
SETOBJECT Create or select contact record Optional object pointer

TOP Move to first logical record Not required

BOTTOM Move to last logical record Not required

SKIP Skip records Optional, recs to skip

SEEK Seek a specific record by key Search key value

SETORDER Select an index Index tag number

GETORDER Return the currently active index
name

Not required

SETTITLE Set the contact record title Text of title

CLOSEWINDOW Close the contact record None

Integrating With GoldMine

194

Subfunction Description Argument
SETRECORD Change the behavior of SKIP, TOP,

and bottom
Name of data structure to be queried

REFRESH Repaint the contact record Not required

GETRP Return the point to the current
contact record (Xbase) or the record
ID (SQL)

Not required

GETFILTEREXPR Get the activated filter’s expression Not required

GETGROUPNO Get the GroupNo of the activated
group

Not required

GOTO Seeks a specific record by
RecordID

The RecID to seek
Additionally, accepts a third optional
parameter, SetPrimary, indicating if
only primary contacts should be
searched (1) or (0) to include
additional contacts in the search
scope.

Setobject If SetObject is called without a second parameter, subsequent calls to
RecordObj will manipulate the currently active contact record. If SetObject is
called with a second parameter of 0, GoldMine will create a minimized contact
record in the work area display, and subsequent calls to RecordObj will
manipulate that contact record. If SetObject is called with a second parameter
of 1, GoldMine will create a minimized contact record in the work area display
and copy any filter or group active on the last used contact record into the newly
minimized contact record.
If RecordObj is called with a specific pointer number, GoldMine will attempt to
establish a link with that contact record.

Top Positions the record pointer at the first logical record according to the current
index order. For example, if the contact record index order is set to Company,
a call to Top will result in the record pointer being positioned at a record with a
company name such as “AAA Cleaners.” GoldMine will also update the contact
record to display the new record.

Bottom Positions the record pointer at the last logical record according to the current
index order. For example, if the contact record index order is set to Company,
a call to Bottom will result in the record pointer being positioned at a record with
a company name such as “Z-best Bakery.” GoldMine will also display the new
record.

Integrating With GoldMine

 195

Skip The Skip subfunction moves the record pointer on a record-by-record basis.
If Skip is called without the second parameter, it will move the record pointer to
the next logical record according to the current index order.
If Skip is called with a string numeric as the second parameter, the record
pointer will be moved forward by the indicated number of records if the value is
positive, or backwards if the value is negative. GoldMine will also update the
display to show the new record.
The Skip subfunction is sensitive to any filter or group that can be active on the
contact record in GoldMine. For example, if the user applies a filter to the
contact record in GoldMine, the Skip subfunction will skip over any records that
do not match the filter expression.

Goto The Goto subfunction positions the record pointer at the record number
specified by a string numeric passed as the second parameter. Additionally,
accepts a third optional parameter, SetPrimary, indicating if only primary
contacts should be searched (1) or (0 - default) to include additional contacts in
the search scope.

<GMAPI call="RecordObj">
 <data name="Command">skip</data>
 <data name="Argument">3</data>
 <data name=”SetPrimary”>1</data>
</GMAPI>

Seek Attempts to locate a record in the data file with an index key that matches the
string passed as the second parameter. Partial key searches are allowed, and
GoldMine will position the record pointer at the record with the key that most
closely matches the passed value. GoldMine will update the display to show the
new record.

Setorder Selects an active index for ordering and SEEKing the contact database. Only
the twelve CONTACT1 indexes can be used for this subfunction. See
“Database Structures” on page 377 for the appropriate values and collating
sequence for each data file’s indexes.

Getorder Returns the active index being used to sort the contact records. See “Database
Structures” on page 377 for the appropriate values and collating sequence for
each data file’s indexes.

Settitle Changes both the text in the title bar of the contact record’s window and the text
displayed below a minimized contact record. For example, an application that
merges contact records within a document can modify the contact record title to
indicate the number of records that have been merged. Any text that is passed
as the second parameter will be used as the new title’s text.

Closewindow Closes the contact record when processing is complete. Issuing this call is
equivalent to selecting Close from the contact record’s system menu.

Integrating With GoldMine

196

Setrecord Changes the behavior of the Skip, Top, and Bottom subfunctions to allow
ancillary contact information (such as additional contacts) to be queried using
the RecordObj function. Normally, GoldMine assumes the CONTACT1 data file
to be the parent data file, and when the Skip, Top, or Bottom subfunction is
called, the record pointer is repositioned in this data file. When accessing
information in GoldMine tabs, however, the Skip, Top, and Bottom subfunctions
must be able to reposition the record pointer in the data file that stores these
items (CONTSUPP).

The SetRecord subfunction accepts the name of the data structure being
queried as the second parameter. Valid data structure names are listed in the
following table.

Setrecord Valid Structure Names
Using SetRecord changes the behavior of the Skip, Top, and Bottom
subfunctions.

The first parameter is the name of the RecordObj subfunction that you want to
perform. When Top is called, GoldMine will position the record pointer in the
supplementary data file so that the first record containing the selected
information is the current record. For example, if SetRecord is used to select
CONTACTS, Top will position the record pointer on the first additional contact
record for the current contact. The record pointer in the primary information data
file (CONTACT1) will not be moved, so the name of the current company will
remain the same. Bottom behaves in a similar manner.

Skip will position the record pointer in the supplementary file on the next
record of the selected type. For example, if SetRecord is used to select
CONTACTS, Skip will position the record pointer in the supplementary file on
the next additional contact record for the current contact. The record pointer in
the primary information data file (CONTACT1) will not be moved, unless the
record pointer in the supplementary file was already positioned at the last
record of the selected type; then GoldMine will reposition the record pointer in
the primary information data file (CONTACT1) to the next contact record and
reset the record pointer in the supplementary file to the first supplemental
record of the selected type. Macro expressions are also sensitive to the setting
of the SetRecord subfunction.

Data Structure
Name

Description

CONTACTS Additional contacts

PROFILE Profile records

REFERRALS Referral records

LINKS Linked documents

PRIMARY Primary contacts

Refresh Repaints the contact record

GetRP Obtains a pointer of the currently selected contact record

GetGroupNo Returns the group number (if a group is activated)

GetFilterExpr Returns the filter expression (if a filter is activated)

Integrating With GoldMine

 197

RETURN VALUE

All RecordObj subfunctions return 1 if the function was completed successfully, or 0
if an internal error occurred.

RETURNED XML
<GMAPI call="RecordObj">

<status code="1">Skip Success</status>

</GMAPI>

Accessing Specialized GoldMine.UI Functions
GoldMine provides a set of specialized functions for performing specific tasks, such
as retrieving a list of plug-ins, adding document links to the contact database, or
sending GoldMine a CallerID message.

Retrieving a List of Active Plug-Ins (GoldMine 7.0 or higher)

Syntax <GMAPI call="GetActivatedPlugIns"/>

The GetActivatedPlugIns function is used to retrieve a list of active (trusted) plug-ins
for the current user’s session. For more information about GoldMine Plug-ins, see
the Working with GoldMine Plug-ins chapter.

Each PlugIn node in the list is an encoded representation of the item. These are
dynamically created and will not be the same starting number on individual
systems. For example, 3013__GMAIL may be 3001__GMAIL on another system. The
text after the number will be the same.

Each plug-in list item contains the following information:
XXXX__InternalName__MethodMenuEntry

RETURNED XML
<GMAPI call="GetActivatedPlugIns">

 <status code="1">Success</status>

 <data name="PlugInList">

 <data name="PlugIn">3007__FrontRangeCTestControl</data>

 <data
name="PlugIn">3002__FrontRangeOutlookWebAccess</data>

 <data
name="PlugIn">3250__FrontRangeMovieViewer10__LaunchMovieViewer10</dat
a>

 <data
name="PlugIn">3251__FrontRangeMovieViewer10__ConfigureMovieViewer10</
data>

 <data name="PlugIn">3001__FrontRangeTestCalendar</data>

 <data name="PlugIn">3003__FrontRangeHelpAbout</data>

 <data name="PlugIn">3008__GamesKittenGame</data>

 <data name="PlugIn">3013__GMAIL</data>

 <data name="PlugIn">3005__GoogleGoogleMaps</data>

Integrating With GoldMine

198

 <data name="PlugIn">3000__JCSFlashandGMViaVBNET</data>

 <data name="PlugIn">3009__JCSOfficeDocument</data>

 <data
name="PlugIn">3004__SolutionSellingSolutionSelling</data>

 </data>

</GMAPI>

Running a Plug-In (GoldMine 7.0 or higher)

Syntax

<GMAPI call="RunPlugIn">3013__GMAIL</GMAPI>

Or

<GMAPI call="RunPlugIn">3013</GMAPI>

Or

<GMAPI call="RunPlugIn">
 <data name=”PlugIn”>3013__GMAIL</data>
</GMAPI>

Or

<GMAPI call="RunPlugIn">
 <data name=”PlugIn”>3013</data>
</GMAPI>

The RunPlugIn function attempts to start the designated plug-in. For more
information about GoldMine Plug-ins, see the Working with GoldMine Plug-ins
chapter.

RETURNED XML
<GMAPI call="RunPlugIn">

 <status code="1">The plug-in call was successful.</status>

</GMAPI>

Or
<GMAPI call="RunPlugIn">

 <status code="0"> The Plug-in ID is invalid</status>

</GMAPI>

Retrieving Login Credentials for Use with the GMXS32.DLL

Syntax <GMAPI call="GetLoginCredentials"/>

The GetLoginCredentials function is used to retrieve a string containing login
credentials to be used for logging into the GMXS32.DLL through the
GMW_LoadAPI, GMW_LoadBDE or GMW_Login functions. Using this option, it is

Integrating With GoldMine

 199

not necessary to prompt the integration user for login information if GoldMine is
running. The login credentials received are only valid for 30 seconds, so do not store
them and attempt to use them at a later time. The string returned by this command
should be used as the password to the appropriate login function, where the
username is “*DDE_LOGIN_CREDENTIALS*”.

RETURNED XML
<GMAPI call="GetLoginCredentials">

<status code="1">KEVIN
01C4D24F7051B9B04F882C36294F1F4AB4E4D20FCF3C1682</status>

</GMAPI>

Retrieving the RecID of the Current Opportunity

Syntax <GMAPI call="GetActiveOppty"/>

The GetActiveOppty function is used to retrieve the RecID of the currently selected
Opportunity in the Opportunity Manager.

RETURN VALUE

The GetActiveOppty function returns the record ID of the currently selected
opportunity. If no opportunity is available, an empty string is returned.

RETURNED XML

No opportunity or project selected in GoldMine:
<GMAPI call="GetActiveOppty">

<status code="1"></status>

</GMAPI>

An opportunity or project is selected in GoldMine:
<GMAPI call="GetActiveOppty">

<status code="1">AOA73CU%Y/HD3\T</status>

</GMAPI>

Completing a Calendar Activity

Syntax

<GMAPI call="CalComplete">
 <data name="Recno">ASSAG6C(+.E%3\T</data>
 <data name="Activity">BIL</data>
 <data name="Ref">Called Angel re Support</data>
 <data name="ResultCode">DON</data>
 <data name="Notes">Agreed on terms</data>
 <data name="User">KEVIN</data>
 <data name=”RetainDate”>1</data>
</GMAPI>

The CalComplete function is used to complete an activity from the Calendar.

PARAMETERS

The CalComplete function takes up to seven parameters.

Integrating With GoldMine

200

Recno: the record number of the calendar activity to be completed.

Activity: the Activity Code. This parameter is optional.

ResultCode: the Result Code. This parameter is optional.

User: the User. If this parameter is not specified, the User field defaults to the
currently logged user.

Ref: the history Reference. This parameter is optional.

Notes: the Notes for the history record. This parameter is optional.

RetainDate: a Boolean (1=true, 0= false) that if true, retains the original date of the
calendar entry, otherwise uses today. Defaults to 0, false.

RETURN VALUE

The CalComplete function returns the record number (Xbase) or record ID (SQL) of
the new history record created.

RETURNED XML
<GMAPI call="CalComplete">

<status code="1">1980</status>

</GMAPI>

Displaying Edit Windows for Calendar and History Items

Syntax
<GMAPI call="PopCalHistItem">
 <data name=”recID”>BNPKDFZ$OF9-]WV</data>
</GMAPI>

Use the PopCalHistItem function to display the edit window for calendar or history
items, including email. When you pass it a valid cal table or conthist recID, the
correct edit window will open.

The Calendar Item edit window is a modal dialog: the return value will not be sent
until the user closes the edit window.

For history items, the record object will align to the owner of the history
automatically. This will not occur for calendar items.

GENERAL MESSAGES

<GMAPI call="PopCalHistItem"><status code="-33001">
PopCalItem has failed because the passed record could not be found.
</status></GMAPI>

<GMAPI call="PopCalHistItem"><status code="-33002">
PopCalItem opens a calendar or contact history record for editing.

Parameters

RecID: the record id of the cal or conthist table entry.
</status></GMAPI>

Integrating With GoldMine

 201

RETURN VALUES

Calendar Item Return Values
<GMAPI call="PopCalHistItem"><status code="0">User pressed cancel
button.</status></GMAPI>

<GMAPI call="PopCalHistItem"><status code="1">User pressed OK
button.</status></GMAPI>

History Item Return Values
<GMAPI call="PopCalHistItem"><status
code="0">Failure</status></GMAPI>

<GMAPI call="PopCalHistItem"><status
code="1">Success</status></GMAPI>

Email Item Return Values
<GMAPI call="PopCalHistItem"><status
code="0">Failure</status></GMAPI>

<GMAPI call="PopCalHistItem"><status
code="1">Success</status></GMAPI>
<GMAPI call="PopCalHistItem"><status code="1">Already
Open</status></GMAPI>

Displaying the Contact Record of an Incoming Caller

Syntax

<GMAPI call="CallerID">
 <data name="Phone">(800)776-7889</data>
 <data name="Description">Incoming caller:</data>
 <data name="DisplayDialog">6</data>
 <data name=”All”>1</data>
 <data name=”UPhone”>1</data>
</GMAPI>

The CallerID function is used to inform the GoldMine user that an incoming call has
been identified by Automatic Number Identification (ANI) equipment attached to
the telephone system. By using CallerID, GoldMine can perform a lookup on the
contact database, and attempt to locate a contact record with a telephone number
that matches the telephone number extracted by the ANI device.

With the CallerID function, GoldMine can automatically display the contact record of
the caller. A dialog box is displayed, allowing the user to select an action. A CallerID
function parameter is used to specify the message in the dialog box.

PARAMETERS

The CallerID function accepts five parameters:

Phone: the telephone number of the caller as captured by the ANI device. The
calling application is responsible for formatting the telephone number that appears
in the Phone1 field in GoldMine.

Description: the optional message to be displayed in the dialog box in GoldMine.

All: Indicates for GoldMine to search all of the phone fields on the contact record
(except FAX). Set to 1 to search all phone fields, 0 to indicate to search only Phone1.

UPhone: Indicates for GoldMine to search the UPhone fields in contact2. This
parameter is ignored if the All parameter is set to 0.

Integrating With GoldMine

202

DisplayDialog: specifies whether the dialog box is displayed. This parameter is the
sum of the required options. For example, to display the caller’s contact record in the
current window if the record is found, or to display the contact listing if the caller’s
phone number is not found, specify 6 (2+4) as the <display dialog> parameter. The
following table lists valid parameter values.
CallerID Parameters

Value Description
0 Dialog box is displayed (default when third parameter is not passed)

1 Dialog box is not displayed, and contact record is displayed in a new contact record

2 Dialog box is not displayed, and contact record is displayed in the current contact record

4 Contact Listing is displayed when GoldMine cannot find the contact’s telephone number.
To activate this option, add this value to the third parameter value.

8 Restores input focus to the window that had input focus just before CALLERID is
called—used by applications that control the entire interface.

RETURN VALUES

CallerID Return Values
Return Description
0 Error occurred

1 Contact record found

2 Contact record not found

RETURNED XML
<GMAPI call="CallerID">

<status code="1">Passed caller was found</status>

</GMAPI>

Running a Counter

Syntax

<GMAPI call="F2Counter">
 <data name="Name">My counter</data>
 <data name="Inc">1</data>
 <data name="Start">0</data>
 <data name="Action">0</data>
</GMAPI>

The F2Counter function returns a sequence of consecutive numbers each time the
expression is evaluated. The DDE equivalent to this function was called “Counter”.

PARAMETERS

The counter name must be unique, and can be a maximum of 10 characters. Each
evaluation of the Counter function increments the counter by the Inc value.

Integrating With GoldMine

 203

The Start and Action parameters are optional. When Action is 1, the start value resets
the counter. When Action is 2, the counter is deleted. F2Counter stores the count
value between GoldMine sessions, and it is shared by all GoldMine users.

GoldMine can track an unlimited number of uniquely named counters. The counter
values are stored in the LOOKUP table.

RETURN VALUE

The F2Counter function returns a number incremented by Inc.

EXAMPLE

The following sets up the counter:
<GMAPI call="F2Counter">

 <data name="Name">Num Iterations</data>

 <data name="Inc">1</data>

 <data name="Start">0</data>

 <data name="Action">0</data>

</GMAPI>

Returns:
<GMAPI call="F2Counter">

<status code="1">0</status>

</GMAPI>

To increment the “Num Iterations” counter:
<GMAPI call="F2Counter">

<data name="Name">Num Iterations</data>

<data name="Include">1</data>

</GMAPI>

Returns:
<GMAPI call="F2Counter">

<status code="1">1</status>

</GMAPI>

Returning GoldMine Record Data

Syntax

Integrating With GoldMine

204

Range

<GMAPI call=”DataStream”>
<data name=”Command”>Range</data>
<data name=”Table”>Contact1</data>
<data name=”Tag”>CONTNAME</data>
<data name=”BotLimit”>A</data>
<data name=”TopLimit”>ZZ</data>
<data name=”Fields”>contact;company</data>
<data name=”Filter”>EXPRESSION</data><! –NOT REQUIRED- >

</GMAPI>

Query

<GMAPI call=”DataStream”>
<data name=”Command”>Query</data>
<data name=”SQL”>select recid from contact1</data>
<data name=”Filter”>EXPRESSION</data><! –NOT REQUIRED- >

</GMAPI>

Fetch

<GMAPI call=”DataStream”>
<data name=”Command”>Fetch</data>
<data name=”Area”>1</data>
<data name=”FetchCount”>55</data>
<data name=”Raw”>0</data><! –NOT REQUIRED- >
<data name=”FieldDelimiter”>|</data><! –NOT REQUIRED- >
<data name=”RowDelimiter”>\-/</data><! –NOT REQUIRED- >

</GMAPI>

Close

<GMAPI call=”DataStream”>
<data name=”Command”>Close</data>
<data name=”Area”>1</data>

</GMAPI>

DataStream returns the data of requested records from any GoldMine table using the
most efficient method possible. The caller can specify the fields and expressions to
return, as well as the range of records to return. A filter can optionally be applied to
the data set.

The DataStream method allows for many useful applications. One example would be
to publish the contents of GoldMine data on the Internet by using XSL templates
with the data returned by DataStream. Web pages can be created to display GoldMine
data requested by a visitor. Based on the visitor’s selections, a company could
dynamically present a variety of HTML pages, such as:

• Addresses of product dealers in a particular city

• Financial numbers stored in Contact2

• Seating availability of upcoming conferences

With a fast Internet connection and a strong SQL server, the GoldMine client could
simultaneously respond to dozens of requests.

Integrating With GoldMine

 205

RECORD SELECTION

The DataStream command consists of four subcommands. Each subcommand takes
different parameters.

The “range” or “query” subcommands must be called first to request the data. The
“range” and “query” subcommands return an integer handle, which must be passed
to the “fetch” and “close” subcommands. You must use either “range” or “query”—
not both.

DATASTREAM RANGE PARAMETERS

The Table, Tag, TopLimit, and BotLimit parameters determine the range of records
to scan. The Fields parameter specifies the requested fields and expression to return.

The Field parameter passed to the “range” subcommand should consist of the field
names and Xbase expressions to evaluate against each record in the data set. Each
field must be terminated with the semicolon (;) character. Xbase expressions must be
prefixed with the ampersand (&) character and terminated with a semicolon.

The other “range” parameters are optional.

DATASTREAM QUERY PARAMETERS

The “query” subcommand sends the SQL query for evaluation on the server.

The SQL query can join multiple tables and return any number of fields. The
optional Filter parameter can specify a Boolean Xbase filter expression to apply to
the data set (even on SQL tables).

DATASTREAM FETCH PARAMETERS

The “fetch” subcommand returns a single packet string that contains the requested
data from all records processed by the current “fetch” command, as specified by the
second Records parameter. Optionally, Fetch can return the requested data
formatted in XML, making it easy to retrieve specific data without having to parse a
large string. To receive the Fetch results formatted for XML, set the “Raw”
parameter to 0. Area must be the value returned from “range” or “query.” The
“fetch” command can be issued multiple times. The optional FieldDelimiter and
RowDelimiter can override the return packet’s default field and record delimiters of
CR and LF. These parameters are not used when retrieving the return packet in
XML format. See “Return Packet” below.

DATASTREAM CLOSE PARAMETERS

The “close” subcommand must be called when the operation is complete. Unclosed
data streams will leak memory and leave the database connections needlessly open.
Passing an Area of 0 closes all open DataStream objects.

THE XML RETURN PACKET

DS_Fetch has an option in the GoldMine XML API to return the data in an XML
format that is easier to process than the traditional datastream return packet.
Consider the following DS_Query XML call:

<GMAPI call="DS_Query" SessionID="1">

Integrating With GoldMine

206

<data name="SQL">select contact, company, key1 from contact1 where
contact=’Rafael Zimberoff’</data>

<data name="Filter"/>

</GMAPI>

Returns:
<GMAPI SessionID="1" call="DS_Query"><status
code="1">1</status></GMAPI>

The DS_Fetch call to retrieve the requested data is:
<GMAPI call="DS_Fetch" SessionID="1">

<data name="Area">1</data>

<data name="Raw">0</data>

<data name="RecordCount">25</data>

</GMAPI>

The resulting XML datastream return packet is:
<GMAPI call="DS_Fetch">

<status code="1">Success</status>

<data name="Return">

<data name="Header">

<data name="field">

<data name="Field_Name">CONTACT</data>

<data name="Field_Type">C</data>

<data name="Field_Length">40</data>

<data name="Field_Decimal">0</data>

</data>

<data name="field">

 <data name="Field_Name">COMPANY</data>

 <data name="Field_Type">C</data>

 <data name="Field_Length">40</data>

 <data name="Field_Decimal">0</data>

</data>

<data name="field">

<data name="Field_Name">KEY1</data>

<data name="Field_Type">C</data>

<data name="Field_Length">20</data>

<data name="Field_Decimal">0</data>

</data>

</data>

<data name="CountData">3000-0001</data>

<data name="Rows">

<data Name="Row">

<data name="CONTACT">Rafael Zimberoff</data>

<data name="COMPANY">Z-Firm LLC</data>

Integrating With GoldMine

 207

<data name="KEY1">Partner</data>

</data>

</data>

</data>

</GMAPI>

The Header node contains child nodes for each field included in the SQL query,
describing the fields’ properties. The CountData node’s text corresponds with the
old fetch return packet’s header data:

The first digit can be 0, 3, or 4:

0 indicates that more records are available, which could be fetched with another
DS_Fetch call

3 indicates the end-of-file (EOF)

4 indicates the beginning-of-file (BOF)

Number following the dash indicates the total number of data records contained in
the packet.

The Rows node contains a child node for each data record returned by the query.

RETURN PACKET

The “fetch” command returns a single packet string containing the data from all
requested records. The packet includes a header record, followed by one record for
each record evaluated by “fetch.” Within each record in the packet, the fields are
separated by a Field Delimiter, the carriage return character by default (13 or 0x0D).
The records in the packet are separated by the Record Delimiter, the line feed
character by default (10 or 0x0A). These delimiters are convenient when the
requested data does not contain notes from blob fields. Otherwise, you must
override the default delimiters by passing other delimiter values to the “fetch”
command. The characters 1 and 2 would probably make good delimiters for packets
with notes.

An example of a packet of data:
3000-0004
Boston|23
London|393
Los Angeles|633
New York|29

The packet header record consists of two sections. The first byte can be 0, 3
or 4. Zero indicates that more records are available, which could be fetched with
another “fetch” command. A value of 3 indicates the end-of-file (EOF), and 4
indicates the beginning-of-file (BOF). The number following the dash indicates the
total number of data records contained in the packet.

Packets should be designed to be 8K to 32K. DataStream takes about as much time to
read three records as it does to read 30. For best performance, adjust the number to
records requested by the “fetch” command to return packets of 8K
to 32K.

Integrating With GoldMine

208

PERFORMANCE

DataStream is the fastest way to read data from GoldMine tables. Used correctly, the
GoldMine DataStream will return the data faster than most development
environments would directly. DataStream offers the following advantages:

1. DataStream issues a single, efficient SQL query or Xbase seek to retrieve the
records from the back-end database to the local client. On SQL databases,
requests of a few hundred records could be sent from the server to the client
with a single network transaction, thereby minimizing network traffic.

2. All fields and expressions are parsed initially by the “range” and “query”
commands, then quickly evaluated against each record in the “fetch”
command. Other lower level GoldMine.UI methods (and development
environments) require that each field be parsed and evaluated each time the
field’s data is read. This can save a significant amount of time when reading
hundreds or thousands of records.

3. Only three calls are required to read all the data. Using traditional record-by-
record querying would require one call for each field of each record (reading
10 fields from 50 records would require 500 calls).

The “range” and “query” commands execute equally fast on SQL databases. The
“range” command executes much faster on Xbase tables than the “query” command.

Processing a Web Import Instruction File

Syntax

<GMAPI call=”ExecIniImp”>c:\theimport.ini</GMAPI>
OR

<GMAPI call=”ExecIniImp”>
 <data name=”IniFile”>c:\theimport.ini</data>
</GMAPI>

An application can send GoldMine a command to process a Web import instruction
file. To start processing an instruction file, send the ExecIniImp command.

For details about setting up and working with the GoldMine Web Import Gateway, see
“Capturing Web Data” in Maintaining GoldMine.

Reading an Xbase Expression Without Opening a File

Syntax

<GMAPI call=”Expr”>Accountno</GMAPI>
OR

<GMAPI call=”Expr”>
 <data name=”Expression”>Accountno</data>
</GMAPI>

The Expr function is similar to the Read function in that it attempts to evaluate an
Xbase expression and return the result. The Expr function, however, does not require
you to open a specific data file using the Open function. The expression passed to the
Expr function is evaluated against the current operating state of GoldMine (usually,

Integrating With GoldMine

 209

the currently displayed record), rather than the state of a specific work area. For this
reason, you should be aware that differences between the return values could exist
for the same expression passed to Read and Expr.

PARAMETERS

The Expr function takes one parameter, Expression—the Xbase expression to be
evaluated. GoldMine supports a subset of the Xbase dialect, so there is substantial
flexibility in the application of this function.

When referencing field names within an expression, you should always use an alias;
otherwise, GoldMine assumes CONTACT1 to be the default alias.

RETURN VALUE

The Expr function returns a character string containing the value of the specified
expression. If an error occurs, or the expression could not be evaluated, the Expr
function will return a null string.

The following XML:
<GMAPI call="Expr">

<data name="Expression">&CityStateZip</data>

</GMAPI>

Returns:
<GMAPI call="Expr">

<status code="1">Colorado Springs, CO 80920</status>

</GMAPI>

Adding Merge Fields to a Form

Syntax
<GMAPI call=”FormAddFields”>
 <data name=”FormNo”>1</data>
 <data name=”FieldList”>contact;company</data>
</GMAPI>

The FormAddFields function adds merge fields to a form profile.

PARAMETERS

The FormAddFields function takes two parameters.

FormNo: the number of the form.

FieldList: a string that lists fields, macros, and expressions; each item in the string is
separated by a semicolon (;). GoldMine parses the string, checks for duplication,
assigns names to the fields, and then stores the items.

Deleting Fields from a Form

Syntax
<GMAPI call=”FormClearFields”>
 <data name=”FormNo”>1</data>
</GMAPI>

Integrating With GoldMine

210

The FormClearFields function opens an existing form profile and deletes all
associated fields.

PARAMETERS

The FormClearFields function takes one parameter, FormNo—the number of the
form.

RETURN VALUE

The FormClearFields function returns 1 if the profile is open, or 0 if an error occurs.

Closing a Form Profile

Syntax <GMAPI call=”FormCloseForm”/>

The FormCloseForm function closes an open form profile.

PARAMETERS

The FormCloseForm function does not accept any parameters.

Creating an Xbase File with Registered Fields

Syntax

<GMAPI call=”FormCreateFile”>
 <data name=”FormNo”>1</data>
 <data name=”File”>c:\XXXX.dbf</data>
 <data name=”MergeCode”>Mergecode</data>
 <data name=”WhichRec”>1</data>
</GMAPI>

The FormCreateFile function creates an Xbase (DBF) file with all registered fields.
Any active filter or group that applies to the contact record is taken into account.
FormCreateFile can be used to export data via the COM Server.

PARAMETERS

The FormCreateFile function takes four parameters.

FormNo: the number of the form.

File: the name of the .DBF file to be created.

MergeCode: the merge code. If any merge code value(s) are included in the function,
only records with the matching merge code(s) will be included. To include multiple
merge codes, place a space between each individual merge code. If the MergeCode
parameter is empty, all records are included.

WhichRec: indicates which records are to be exported. The WhichRec value is the
sum of values for each available listed below.
WhichRec Values

Value Description
1 Primary

2 Secondary

Integrating With GoldMine

 211

Value Description
4 All records

8 Forward to last

16 Return control to the calling program immediately after export has started

EXAMPLES OF WHICHREC PARAMETER
Current contact 1
All primary contacts 5 (1+4)
Forward to last of primary and additional contacts 11 (1+2+8)

RETURN VALUE

The FORMCREATEFILE function returns the total number of records in the output
.DBF file.

Returning a Field Name for an Expression

Syntax
<GMAPI call=”FormGetFieldName”>
 <data name=”FormNo”>1</data>
 <data name=”Field”>contact</data>
</GMAPI>

The FormGetFieldName function returns the field name for an expression, a macro,
or a field.

PARAMETERS

The FormGetFieldName function takes two parameters.

FormNo: the number of the form.

Field: the name of the field, macro, or expression to be associated with the file name.

Returning a Value for Unattached Fields

Syntax <GMAPI call=”FormNewFormNo”/>

RETURN VALUE

The FormNewFormNo function returns a new, unique FormNo value that can be
used to register fields not attached to a GoldMine form.

Counting the Number of Exported Records

Syntax
<GMAPI call=”FormQueryCreate”>
 <data name=”Flags”>0</data>
</GMAPI

The FormQueryCreate function provides status information during an export by
returning the number of records exported during the export process.

PARAMETERS

The FormQueryCreate function takes one optional parameter, Flags.

Integrating With GoldMine

212

The following table lists values of FormQueryCreate parameters.
FormQueryCreate Parameters

Value Description
0 Export in progress (default)

1 Start process

2 Abort process

RETURN VALUE

The FormQueryCreate function returns the number of records created while an
export is in progress, or -1 when the record export process is completed.

FormPrintedDoc

Syntax
<GMAPI call=”FormPrintedDoc”>
 <data name=”RecordID”> 9NDJRJN(EQ[)JW:</data>
</GMAPI

The FormPrintedDoc function is used to complete a pending literature fulfillment
request. Call this function after printing the merge form to remove the pending
literature fulfillment and create a history record.

PARAMETERS

RecordID: the RecID of the pending literature fulfillment request.

Creating a History Record

Syntax

<GMAPI call="InsHist">
 <data name="AccNo">A3042474804 WB9!JCat</data>
 <data name="Activity">SLS</data>
 <data name="Duration">00:35:00</data>
 <data name=”OpRecID”>ValidOpRecid</data>
 <data name="RecType">C</data>
 <data name="Ref">Informed Paul of sale terms</data>
 <data name="ResultCode">DON</data>
 <data name="Notes">Ready to proceed to next step</data>
 <data name="User">KEVIN</data>
 <data name="Private">1</data>
</GMAPI>

The InsHistory function is used to create a history record in GoldMine. The
InsHistory function provides a higher level interface for creating these records than
using Open, Append, and Replace.

PARAMETERS

AccNo: the account number of the contact record to which the new history record
will be linked.

Rectype: the record type to create. The following values are available:

Integrating With GoldMine

 213

InsHistory Activity Valid Values
Value Record Type Value Record Type
A Appointment U Unknown

C Phone call CC Call back

D To-do CI Incoming call

E Event CM Returned message

L Form CO Outgoing call

M Sent message MG E-mail message

O Other MI Received e-mail

S Sale MO Sent e-mail

T Next action

Duration: the length of time spent on the activity. Format as HH:MM:SS. (optional)

OpRecid: the Recid of the opportunity or project record to link the history activity.
 Omit if not linking to a project or opportunity (optional).

Ref: the history reference.

Notes: the Notes for the history record (optional).

Activity: the Activity Code (optional).

ResultCode: the Result Code (optional).

User: the User (optional). If this parameter is not specified, the User field defaults to
the currently logged user.

Private: flag to specify if the history activity should be marked private. Set to 1 for
 private, or 0 to public.

RETURN VALUE

The InsHistory function returns the record number (Xbase) or record ID (SQL) of the
new history record if the function was completed successfully. The function returns
0 if a new record could not be appended to the data file.

RETURNED XML
<GMAPI call="InsHist">

<status code="1">1982</status>

</GMAPI>

Integrating With GoldMine

214

Creating or Updating a Document Link

Syntax

<GMAPI call="LinkDoc">
 <data name="RecNo">0</data>
 <data name="File">C:\Documents and Settings\Kevin\My
 Documents\GMAPI\TLog_Mechanics.pdf</data>
 <data name="Desc">Help File</data>
 <data name="User">KEVIN</data>
 <data name="Notes">Read this</data>
 <data name="Sync">1</data>
</GMAPI>

The LinkDoc function is used to create or update a document link in GoldMine.
Document links allow you to launch directly into an application and load the
application with a document by clicking on the desired document listed in the
contact’s Links tab. GoldMine maintains these links as records in the supplementary
data file. The LinkDoc function provides a higher level interface to these records
than can be obtained by using Open, Append, and Replace.

PARAMETERS

RecNo: the record number of the link record to be updated. If a new link record is to
be created, pass 0 as the first parameter.

File: the fully qualified path and filename of the file to link. Keep in mind that a
valid association must exist for the file’s extension if GoldMine is to automatically
launch the file’s application.

Desc: the document title.

User: the optional document owner. If this field is not passed, the document owner
defaults to the name of the currently logged GoldMine user.

Notes: optional notes for the linked document record in the Links tab.

Sync: defines the remote synchronization status for the linked document from the
values shown in the following table.
Sync Valid Values

Value Action
-1 Uses the GoldMine default as defined by Allow new documents to sync by default in

the Sync tab of the Preferences window.

0 Does not synchronize the newly linked document.

1 Allows the newly linked document to synchronize.

RETURN VALUE

The LinkDoc function returns the new record number (Xbase) or record ID (SQL) if
the function was completed successfully. The function returns any empty string if a
new record could not be appended to the data file, or an existing record could not be
locked for update.

RETURNED XML
<GMAPI call="LinkDoc">

Integrating With GoldMine

 215

<status code="1">482</status>

</GMAPI>

Displaying a Message Dialog Box

Syntax
<GMAPI call=”MsgBox”>
 <data name=”Message”>Are you sure?</data>
 <data name=”Style”>4</data>
</GMAPI>

The MsgBox function displays a standard Windows message dialog box.

PARAMETERS

The MsgBox function accepts two parameters.

MsgBox: the message to display within the dialog box.

Style: the optional style of the message box. This value is the sum of the following
options:
MsgBox Style Values

Value Meaning
0 Display OK button only

1 Display OK and Cancel buttons

2 Display Abort, Retry, and Ignore buttons

3 Display Yes, No, and Cancel buttons

4 Display Yes and No buttons

5 Display Retry and Cancel buttons

16 Display Stop icon

32 Display Question Mark icon

48 Display Exclamation Mark icon

64 Display Information icon

128 First button is default

256 Second button is default

512 Third button is default

RETURN VALUE

The MsgBox function returns the following values:
MsgBox Return Values

Return Description
1 OK button selected

2 Cancel button selected

3 Abort button selected

4 Retry button selected

Integrating With GoldMine

216

Return Description
5 Ignore button selected

6 Yes button selected

7 No button selected

RETURNED XML
<GMAPI call="MsgBox">

<status code="1">6</status>

</GMAPI>

Adding a Merge Form

Syntax

<GMAPI call=”NewForm”>
 <data name=”AppType”>Microsoft.Word.10</data>
 <data name=”Template”>c:\Program
 Files\GoldMine\Templates\Proposal.doc</data>
 <data name=”Title”>Business Proposal</data>
 <data name=”Macro”>[MsgBox(“Form Added”,”0”)]</data>
 <data name=”FormType”>0</data>
 <data name=”Flags”>3</data>
</GMAPI>

The NewForm function adds a merge template record into the Merge Forms window
in GoldMine. This function’s DDE counterpart is used primarily by the document
merge link installation macro; however, the function can also be used to add
additional merge templates from a user-written application.

PARAMETERS

The NewForm function takes up to six parameters; the first three parameters are
required, and the last three parameters are optional.

AppType: the type of document to which the new form record will point. This value
must be a valid Application Identifier, such as Word.Document.6, that corresponds
to an entry in the Registration Database.

Template: the fully qualified path and filename of the template file.

Title: the title of the document as it should appear in the Merge Forms browse
window.

Macro: the name of an optional DDE function to be called after the template is
loaded by the linked application. If this parameter is not specified, the default
function is MAINMENU. This parameter must be passed in DDE call format.

FormType: the optional type of template. If this parameter is not specified, the
template type is assumed to be Document. GoldMine accepts the following values
for this parameter:
Document Types

Type Description
0 Document

Integrating With GoldMine

 217

Type Description
1 Spreadsheet

2 Other

Flags: a three-character field corresponding to the values of the Link To Doc, Save
History and Allow Hot Link options on the Form Setup dialog box. To set (check) one
of these options, 1 is passed; to reset (uncheck), 0 is passed.

Integrating With GoldMine

218

Flag Values
Position Description
0 Link To Doc check box

1 Save History check box

2 Allow Hot Link check box

RETURN VALUE

The NewForm function returns a form number.

Playing a Toolbar Macro

Syntax
<GMAPI call=”PlayMacro”>
 <data name=”Macro”>800</data>
 <data name=”Wait”>0</data>
</GMAPI>

A macro groups together a series of commands, keystrokes, and/or mouse clicks
into a one-step operation. You can create a macro to automate a sequence of tasks
that you perform frequently in GoldMine. This function plays a macro previously
created in GoldMine.

PARAMETERS

The PlayMacro function takes two parameters that identify the macro and assign a
wait state.

Macro: The first parameter identifies the macro. Either the number for the currently
logged user or a valid macro filename can be used to identify a macro.

IDENTIFYING A MACRO BY NUMBER

Each user can create up to 100 macros from the GoldMine toolbar. Each macro can be
assigned an optional numeric identification from 800 to 899. For example, you can assign
800 to identify your first macro, 801 to identify your second macro, and so on.

For details about creating a macro from the GoldMine toolbar, see “Customizing the
GoldMine Toolbar” in the online Help.

IDENTIFYING A MACRO BY FILE NAME

You can assign a file name to identify the macro, such as
C:\GOLDMINE\MACROS\JOHN.801.

Wait: The second parameter assigns a wait state that determines GoldMine
availability to process another macro or task while the current macro executes. To set
GoldMine to wait for the currently executing macro to finish before starting another
task, set the parameter to 1. For example, if you are setting up a sequence of macros
to run tutorial lessons, you want GoldMine to wait for each lesson to finish before
executing the next macro that will run the following lesson.

To allow GoldMine to perform background processing, such as indexing, while the
macro(s) execute, set the parameter to 0.

Integrating With GoldMine

 219

RETURN VALUE

The PlayMacro function returns an integer value based on the wait parameter; that
is, GoldMine availability to process a task in addition to the currently running
macro. If the wait parameter is 0 (GoldMine does not wait for the macro to finish to
process another task), the PlayMacro function will always return 1. If the wait
parameter is 1 (GoldMine will wait for the current macro to finish before processing
another macro or task), the PlayMacro function will return either 0 or 1 under the
following conditions:
PlayMacro Return Values

Return Description
0 Error occurred during macro playback

1 Macro played successfully

You can also play a macro from the command line (DOS prompt). Executing a macro from the
command line can be useful in running functions at night, such as indexing, running an Automated
Process, or synchronizing with remote sites with a transfer set created via macro. You can either
identify a macro by an identification number, like GMW4 /m:801, or by file name like GMW4 /m:c:
\index.801. If necessary, the command line statement can start GoldMine and then, once started,
run the macro.

Optional switches include:

/m: Logs in automatically to GoldMine

/u:[username] Provides the username entry to log in to GoldMine

/p:[password] Provides the password entry to log in to GoldMine

If running the Plus! Pack with Windows, you can run a macro from the System Agent by placing a
command line switch for GoldMine in the Program field of the Schedule a New Program dialog box
that will run a macro. For example, to log in John with his username and password, then run John’s
first macro, place the following macro in the System Agent:

GMW5 /u:john /p:pswd /m:800

Where GMW5/ starts Goldmine, u:john/ is login user John, p:pswd/ enters the password
password, and m:800 runs first macro.

Creating and Sending a Pager Message

Syntax

<GMAPI call=”SendPage”>
 <data name=”Message”>Your 3:00pm appointment is cancelled</data>
 <data name=”To”>PAULR</data>
 <data name=”From”>Trish</data>
</GMAPI>

The SendPage function allows you to create and send a message to the pager of a
GoldMine user. The function consists of the following components:

Integrating With GoldMine

220

Message can consist of any text message that you create with this function to send to
a pager; most pages can accept messages of
70–100 characters.

From includes the sender’s name as an optional “signature.”

To identifies an optional GoldMine user who will receive the pager message.
Information about the pager must be entered in the Edit|Preferences|Pager tab, such
as ID code or PIN number, telephone number of the pager, and maximum message
size in characters that the pager can accept.

RETURN VALUE

The SendPage function can return one of two values.
SendPage Return Values

Return Description
0 Error occurred during the attempt to send the message to the pager

1 Pager message was transmitted successfully

Displaying a Message in the GoldMine Status Bar

Syntax
<GMAPI call=”StatusMsg”>
 <data name=”Message”>Waiting for command</data>
 <data name=”Delay”/>
</GMAPI>

The StatusMsg function displays a message in the GoldMine status bar.

PARAMETERS

Message: the message to be displayed in the status bar.

Delay: an optional delay, after which time the message is removed from the status
bar.

RETURNED XML
<GMAPI call="StatusMsg">

<status code="1">Success</status>

</GMAPI>

Converting TLog Timestamps

Syntax
<GMAPI call=”SyncStamp”>
 <data name=”Stamp”>20040120:10:36:52</data>
</GMAPI>

The SyncStamp function converts a TLog timestamp to a date and time
representation, and from a date and time representation back to the TLog time stamp
format.

PARAMETER

The SyncStamp function takes one parameter, Stamp.

Integrating With GoldMine

 221

RETURN VALUES

When the Stamp parameter is exactly 17 characters long, formatted as Date:Time in
form of CCYYMMDD:HH:MM:SS, the return string is in TLog time stamp format,
exactly seven characters long. When the Stamp parameter is seven characters long,
and formatted as a TLog timestamp, the return string is formatted as
CCYYMMDD:HH:MM:SS. An empty return string indicates an error.

RETURNED XML
<GMAPI call="SyncStamp">

<status code="1">A6P9FC8</status>

</GMAPI>

Updating the Sync Log File

SYNTAX

XML

<GMAPI call="UpdateSyncLog" >
 <data name="Table">Contact1</data>
 <data name="RecID">9NDJRJN(EQ[)JW:</data>
 <data name="Field">Key3</data>
 <data name="Action">U</data>
</GMAPI>

PARAMETERS

Table specifies the table name (such as “Contact1”) or the table ID.

RecID specifies the RecID of the updated record: the correct RecID must be passed,
and the RecID value must be exactly 15 characters long.

Field specifies the name of the field that has changed. This parameter is only relevant
when the Action parameter is U. Field is ignored when Action is N or D.

Action should be N when a new record has been appended, D when a record has
been deleted, or U when a field in a record has been updated.

RETURN VALUES

The UpdateSyncLog function returns the following XML:
<GMAPI call="UpdateSyncLog">

<status code="4">Field TLog entry created.</status>

</GMAPI>

UpdateSyncLog Code Attribute Values
Return Description
0 Error

1 New TLog entry created

2 New TLog entry updated

4 Field TLog entry created

Integrating With GoldMine

222

Return Description
8 Field TLog entry updated

16 Deleted record TLog entry created

32 New TLog Entry removed

Importing a Prepared TLog Import File
ReadImpTLog reads the status of a TLog import file, then deletes the import file
when the process is completed.

SYNTAX

XML

<GMAPI call="ReadImpTLog" >
 <data name="File">c:\tlogs\mytlog.dbf</data>
 <data name="Delete">1</data>
</GMAPI>

PARAMETERS

File specifies the import file name—see below for the import file structure.

Delete specifies to delete the import file when the process has completed.

RETURN VALUES

ReadImpTLog function returns the following values in the code attribute:
ReadImpTLog Code Attribute Values

Code Description
0 Failure

1 Success -- Text is total number of imported TLog records

NOTES

Your application can determine when the imported process completes by setting the
Delete parameter to 1, and noting when the import file is deleted. The TLog import
must have the structure shown in the following table.
TLog Import Structure

Field Name Type Length
Table ID char 10

RecID char 15

Field ID char 10

Action ID char 1

Integrating With GoldMine

 223

Forcing Logout

SYNTAX

XML

<GMAPI call="ForceLogout" >
 <data name="LogoutSelf">1</data>
 <data name="Relogin">1</data>
 <data name=”InMinutes”>1</data>
</GMAPI>

The ForceLogout command forces all users to logout of GoldMine.

PARAMETERS

LogoutSelf: specifies if the currently logged in user should also be logged out. 1 for
rue, 0 for false.

Relogin: Set to 1 to indicate for GoldMine to relogin after the users are logged out.

InMinutes: Specifies the number of minutes to wait before forcing the logout.

Reading Security and Rights

RETRIEVING USER PERMISSIONS
The UserAccess function retrieves specific permission information for the logged-in
user.

SYNTAX

XML <GMAPI call="UserAccess"/>

This command returns a data element for each of the following permissions for the
logged in user. The text value of the data element will be either 0 or 1, indicating if
the permission is granted for the user.
Permissions Returned by UserAccess

Rights
Master Rights

Other User Calendar Access

Other User History Access

Other User Sales Access

Other User Report Access

Other User Merge Form Acccess

Other User Filter Access

Other User Groups Access

Other User Links Access

Create Records

Integrating With GoldMine

224

Rights
Edit Records

Delete Records

Change Owner

Field Views

Schedule APs

SQL Queries

NetUpdate

Build Groups

RETURNED XML
<GMAPI call="UserAccess">

<status code="1">Success.</status>

<data name="return">

<data name="Master Rights">1</data>

<data name="Other User Calendar Access">1</data>

<data name="Other User History Access">1</data>

<data name="Other User Sales Access">1</data>

<data name="Other User Report Access">1</data>

<data name="Other User Merge Form Access">1</data>

<data name="Other User Filter Access">1</data>

<data name="Other User Groups Access">1</data>

<data name="Other User Links Access">1</data>

<data name="Create Records">1</data>

<data name="Edit Records">1</data>

<data name="Delete Records">1</data>

<data name="Change Owner">1</data>

<data name="Field Views">1</data>

<data name="Schedule APs">1</data>

<data name="SQL Queries">1</data>

<data name="NetUpdate">1</data>

<data name="Build Groups">1</data>

</data>

</GMAPI>

RETRIEVING CALENDAR PERMISSIONS
Using CalAccess, you can query whether the user logged in to GoldMine has
permissions to read/write a particular CAL record.

Integrating With GoldMine

 225

SYNTAX

XML

<GMAPI call=”CalAccess”>
 <data name=”RecordType”>C</data>
 <data name=”User”>KEVIN</data>
 <data name=”Number1”>22</data>
</GMAPI>

PARAMETERS

Pass this command the record type and number1 value from the calendar record in
question. Also pass the user you wish to query if they have permission to this record
or not.

RecordType is the RecType of the record.

User is the UserID of the record.

Number1 is the Number1 value of the record.

RETURN VALUES

The CalAccess function returns 1 if the user has rights to read/write.

RETRIEVING HISTORY ACCESS
Using HistAccess, you can query if the user logged has rights to read/write a
CONTHIST record.

SYNTAX

XML

<GMAPI call=”HistAccess”>
 <data name=”RecordType”>C</data>
 <data name=”User”>KEVIN</data>
</GMAPI>

PARAMETERS

Pass this command the record type value from the calendar record in question. Also
pass the user you wish to query if they have permission to this record or not.

RecordType is the RecType of the record.

User is the UserID of the record.

RETURN VALUES

The HistAccess function returns 1 if the user has rights to read/write.

Macros
To facilitate the use of DDEAUTO fields, GoldMine allows you to select a macro as
the service item. Upon encountering a DDE service item that starts with an
ampersand (&), GoldMine searches an internal table of macro names. If a match is
found, the macro is processed and the result is returned, as if a DDE function or

Integrating With GoldMine

226

expression had been used. The GoldMine COM Server recognizes these same
macros for use in such methods as Expr and Macro.

Most macros are sensitive to the setting of the RECORDOBJ function’s SETRECORD
subfunction. This function is used primarily to gain access to additional contacts and
other supplementary information. When the SETRECORD type is set to PRIMARY,
the following macros will return the value from the corresponding fields in the
primary information portion of the contact record. When the SETRECORD type is
set to CONTACTS (additional contacts), or another supplementary record type, the
macros will return the value from the corresponding field in the supplementary file
(CONTSUPP.DBF).

Executing Macros
To evaluate any of the macros described in this section, use the Macro command for
the GoldMine COM Server.

Syntax
<GMAPI call=”Macro”>
 <data name=”Macro”>&FullAddress</data>
</GMAPI>

RETURNED XML

The XML returned will of course vary based on the Macro requested.

For the example in the Syntax table above, the XML returned is:
<GMAPI call="Macro">

<status code="1">1150 Kelly Johnson Blvd. Colorado Springs, CO 80920
</status>

</GMAPI>

Available Data-Related Macros

&Address Returns a string containing the values of both &Address1 and
&Address2, separated by a carriage return and line feed character. If
either &Address1 or &Address2 does not contain any data, a single line
of data is returned, without the carriage return and line feed character.
This macro can be used to perform rudimentary blank line suppression
within linked applications that do not support blank address line
suppression internally.
The action of this macro string is similar to the action of the &Address
macro. The &Address2 macro can be used to return an additional contact
address by using the RECORDOBJ SETRECORD subfunction.

Integrating With GoldMine

 227

&Address1 Returns the first Address field from the active contact record. Typically, this
value will be extracted from the Address1 field in the primary display
portion of the contact record; however, when the RECORDOBJ
SETRECORD subfunction has been used to change the returned record
type to CONTACTS, then GoldMine returns the value from the Address1
field on the additional contact record, if a value is entered. When the
Address1 field on the additional contact record is blank, then the
&Address1 macro returns the value in the Address1 field in the primary
display portion of the contact record. When the RECORDOBJ
SETRECORD type is set to return a record type other than CONTACTS,
the &Address1 macro returns the value in Address1 field in the primary
display portion of the contact record.

&Address2 Returns the second Address field from the active contact record. Typically,
this value will be extracted from the Address2 field in the primary display
portion of the contact record; however, when the RECORDOBJ
SETRECORD subfunction has been used to change the returned record
type to ADDITIONAL, then GoldMine returns the value from the Address2
field on the additional contact record, if an entry exists in the Address2 field
on the additional contact record. When the Address2 field on the additional
contact record is blank, then the &Address2 macro returns the value in the
Address2 field in the primary display portion of the contact record. When
the RECORDOBJ SETRECORD type is set to return a record type other
than PRIMARY or ADDITIONAL, the &Address2 macro returns the value
in the Address2 field of the primary display portion of the contact record.

&BrowseRecNo Xbase: Returns the record number of the last selected record in a browse
window.
SQL: Returns the record ID of the last selected record in a browse window.

&CalRefresh Refreshes the graphical calendar display.

&City Returns the City field from the active contact record. The action of this
macro string is similar to the action of &Address1. The &City macro can
be used to return an additional contact city by using the RECORDOBJ
SETRECORD subfunction.

&CityStateZip Returns a format string of text containing the City, State, and Zip fields
from the active contact record. This string is returned in the following format:
City, State Zip
The action of this macro string is similar to the action of &Address1. The
&CityStateZip macro can be used to return an additional contact city,
state, and ZIP Code by using the RECORDOBJ SETRECORD
subfunction.

&CommonDir Xbase: Returns the path information for the directory where the contact
sets are located.
SQL: Returns the BDE alias where the contact sets are located.

Integrating With GoldMine

228

&Contact Returns a Contact name from the active contact record. Normally, this
value will be extracted from the Contact field in the primary display portion
of the contact record; however, the RECORDOBJ SETRECORD
subfunction can be used to change the returned record type to additional
contact, or another type of supplementary record. When the RECORDOBJ
SETRECORD type is set to return record types other than PRIMARY, the
&Contact macro returns the value in Contact field in CONTSUPP for the
current supplementary record.

&Country Returns the Country field from the active contact record. The action of this
macro string is similar to the action of &Address1. The &Country macro can
be used to return an additional contact country by using the RECORDOBJ
SETRECORD subfunction.

&Dial1 Returns the Phone1 entry from the active contact record. The returned
phone number is formatted for dialing. GoldMine applies the same rules
used to dial the phone via TAPI. If selected, PREDIAL.INI settings are
applied to phone number selection.

&Dial2 Returns the Phone2 entry from the active contact record. For details, see
&Dial1 above.

&Dial3 Returns the Phone3 entry from the active contact record. For details, see
&Dial1 above.

&DialFax Returns the FAX entry from the active contact record. For details, see
&Dial1 above.

&EmailAddress Returns the primary e-mail address for the currently selected contact.

&Fax Returns the fax number as it should be sent to an auto-dialer for automatic
fax transmission.

&Filter Returns the activated filter expression.

&FirstName Returns the first name of the current contact.

&FullAddress Returns a string containing the complete address for the contact record,
composed of values of &Address1, &Address2, &City, &State, and &ZIP.
The action of this macro string is similar to the action of &Address1. The
&FullAddress macro can be used to return an additional contact address by
using the RECORDOBJ SETRECORD subfunction.

Integrating With GoldMine

 229

&GetRoTabID Returns the ID of the currently selected tab. Typically, this value will verify
that the correct tab is selected when a user starts a custom application.

The following values are valid:

0 = Summary
1 = Fields
2 = GM+View
3 = Notes
4 = Contacts
5 = Details
6 = Referral
7 = Pending
8 = History
9 = Links
10 = Members
11 = APs/Tracks
12 = Opportunities
13 = Projects
14 = Relationships/Org tree
15 = Cases
16 = HEAT View if installed, else it will go to the first tab
17+ = custom if installed, otherwise the first tab

The following example tests the selection of the Details tab:

<GMAPI call="Macro">&GetROTabID</GMAPI>

Returns:

<GMAPI call="Macro"><status
code="1">1</status></GMAPI>

&GetRoTabPos Returns the currently selected tab position. Since the tabs can be
rearranged, this method is not always reliable for determining the currently
selected tab. For details, see &GetRoTabID.

&GoldDir Xbase: Returns path information for the directory in which GoldMine is
installed.
SQL: Returns path information for BDE alias in which GoldMine is installed.

&LastFirstName Returns the name of the current contact in the format:
last name, first name

&LicUsers Returns the number of concurrent users allowed to log in to the installed
copy of GoldMine.

&LicUsersAvailable Returns the number of users allowed to log in to the installed copy of
GoldMine license.

Integrating With GoldMine

230

&NameAddress Returns a string containing the contact’s name, company, and complete
address of the current contact record. Each address line is separated by a
carriage return and line feed, and the entire string is formatted so that the
string can be inserted directly into a merge template. If any of the address
lines on the contact record is empty, that address line will be suppressed.
This macro can be used to perform rudimentary blank line suppression
within linked applications that do not support blank address line
suppression internally.
The action of this macro string is similar to the action of the &ADDRESS
macros, and the &NAMEADDRESS macro can be used to return an
additional contact address by using the RECORDOBJ SETRECORD
subfunction.

&NameTitleAddress Returns a string containing the contact’s name, title, department, company,
and complete address of the current contact record. Each line is separated
by a carriage return and line feed, and the entire string is formatted so that
the string can be inserted directly into a merge template. If any of the lines
on the contact record is empty, that line will be suppressed. This macro can
be used to perform rudimentary blank line suppression within linked
applications that do not support blank address line suppression internally.
The action of this macro string is similar to the action of the &ADDRESS
macros, and the &NAMETITLEADDRESS macro can be used to return an
additional contact address by using the RECORDOBJ SETRECORD
subfunction.

&NewRecID Returns a unique record ID, which can be used when creating new records.

&Notes Returns the Notes from the active contact record. Typically, this value will
be extracted from the Notes field in the primary display portion of the
contact record; however, the RECORDOBJ SETRECORD subfunction can
be used to change the returned record type to additional contact, or another
type of supplementary record. When the RECORDOBJ SETRECORD type
is set to other than PRIMARY, the &TITLE macro returns the value in Notes
field in CONTSUPP for the current supplementary record.

&Phone Returns a telephone number from the selected contact record.
The action of this macro string is similar to the action of the &ADDRESS1.
The &PHONE macro can be used to return an additional contact telephone
number by using the RECORDOBJ SETRECORD subfunction.

Integrating With GoldMine

 231

&Profile(s) Two related macros:
&Profile: Returns the first matching profile record for the selected contact.
&Profiles: Returns all profile records for the selected contact.
Both of these macros take optional parameters. Each parameter must be
separated by a period (.). The following examples show the syntax for the
&Profile(s) macros:

&PROFILE EXAMPLE 1
&Profile.ProfileName.Reference.Flags

Retrieves the first profile that matches the ProfileName and Reference.
The Reference parameter is optional. If passed, the Reference parameter
acts as a “begin with” condition on the profile reference. If the Reference
parameter is not passed, all ProfileName profiles are evaluated.
The optional Flags parameter has the following values:
2 Returns the extended profile fields
4 Returns the ProfileName and Reference
The &Profile(s) macro can easily fill in a Word table with the selected
contact’s profile information because tabs separate each field value, and a
CR/LF separates each profile record.

&PROFILE EXAMPLE 2
The following example returns the first e-mail address of the contact:

&Profile.E-mail Address

&PROFILES EXAMPLE 1
The following example returns all the computer profiles that begin with the
word notebook:

&Profiles.Computer.Notebook

&PROFILES EXAMPLE 2
The following examples use the Flags parameter to specify the profile fields
to return:

&Profiles.Computer.Notebook
Notebook ThinkPad 770|
Notebook Compaq Elite|
Notebook Dell 1200|

&Profiles.Computer.Notebook.2
Computer|Notebook ThinkPad 770|
Computer|Notebook Compaq Elite|
Computer|Notebook Dell 1200||

&Profiles.Computer.Notebook.4
Computer|Notebook ThinkPad 770|IBM|233Mz|
Computer|Notebook Compaq Elite|Compaq|200mz|
Computer|Notebook Dell 1200|Dell|166mz|

Integrating With GoldMine

232

&ProgramDataDir Returns the place where the GM.ini, user.ini, and anything that needs to
have read/write access in GoldMine can be found. This is important for
Vista. It is very similar to the split path installs that GoldMine had when
Windows XP was released. For non split paths, it will return the SysDir.

Example:

<GMAPI call="Macro">Programdatadir</GMAPI>

Returns :

<GMAPI call="Macro"><status
code="1">c:\code\GMDev8.0_Main\bin\debug\</s
tatus></GMAPI>

&RoTabPage Returns the currently selected tab. Typically, this value will verify that the
correct tab is selected when a user starts a custom application. Values
between 1 and 9 represent tabs in the first row of tabs; for example, 1
represents the Summary tab. Values between 10 and 18 represent tabs in
the second row, and 19–27 represent tabs in the third row.

&SerialNo Returns the serial number of the installed GoldMine program.

&SetRoTab# Selects the tab that corresponds to the number (represented by #) in the
active contact record.

The following values are valid:

1 = Summary
2 = Fields
3 = GM+View
4 = Notes
5 = Contacts
6 = Details
7 = Referral
8 = Pending
9 = History
10 = Links
11 = Members
12 = APs/Tracks
13 = Opportunities
14 = Projects
15 = Relationships/Org tree
16 = Cases
17 = HEAT View if installed, else it will go to the first tab
18+ = custom if installed, otherwise the first tab

Example:

<GMAPI call="Macro">&SetROTab4</GMAPI>

Displays the Notes tab in the contact record.

Integrating With GoldMine

 233

&ShutDown Logs out the currently logged user, and quits GoldMine.

&State Returns the State field from the active contact record. The action of this
macro string is similar to the action of the &ADDRESS1. The &STATE
macro can be used to return an additional contact state by using the
RECORDOBJ SETRECORD subfunction.

&SysDir Returns the GoldMine system directory.

&SysInfo Displays system information as returned by Help>About GoldMine>System
Info.

&Title Returns the Title from the active contact record. Normally, this value will be
extracted from the Title field in the primary display portion of the contact
record; however, the RECORDOBJ SETRECORD subfunction can be
used to change the returned record type to additional contact, or another
type of supplementary record. When the RECORDOBJ SETRECORD type
is set to other than PRIMARY, the &TITLE macro returns the value in Title
field in CONTSUPP for the current supplementary record.

&User_Var Returns the defined field value from all users, a specified user, or the
currently logged user. For details on defining values, see “Defining Field
Values for use with External Applications” in Maintaining GoldMine.
The &User_Var macro allows GoldMine users to store specific data that
can be retrieved later into applications that are linked with GoldMine. This
macro can be defined in the [user_var] section of both the GM.INI and the
username.INI of GoldMine.
Usage Syntax:
&User_Var.<variable name>.<GoldMine username>
Example:
&User_Var.Territory.Dan
(Where <variable name> is a descriptive name of the macro and
<GoldMine username> assigns a defined value to a specific GoldMine
user.) <GoldMine username> is optional, as GoldMine will assign these
values to the current GoldMine user.

&UserFullName Returns the full name of the currently logged GoldMine user as the name
appears in the FullName field in the Users Master File for the user.

&UserName Returns the login name of the currently logged GoldMine user.

&Version Returns the version number of the installed GoldMine program.

&WebSite Returns http://<Web site> for the active contact.

&ZIP Returns the Zip field from the currently active contact record. The action of
this macro string is similar to the action of the &ADDRESS1. The &ZIP
macro can be used to return an additional contact ZIP Code by using the
RECORDOBJ SETRECORD subfunction.

Macros for Merge Forms
The following macros are used primarily for creating links to GoldMine through the
Merge Forms function. The values returned by each of these macros are updated by
GoldMine when a Merge Form is launched by selecting Edit, Link, Print or Fax from
the Merge Forms dialog box.

Integrating With GoldMine

234

&PARAM1
(filename)

Returns the path and filename of the document template associated with the merge
form selected when Edit, Link, Print, or Fax was selected. This value is obtained
from the Template File field in the merge form’s Form Setting dialog box.

&PARAM2
(action)

Returns a value indicating whether the Edit, Link, Print, or Fax button was selected
to launch linked application.

&PARAM2 Parameters
Value Description
1 Edit selected

2 Link selected

3 Print selected

4 Fax selected

&PARAM3
(range)

Returns a value corresponding to the setting of the Record Range options on the
Merge Forms dialog box when the Edit, Link, Print, or Fax button was selected.

&PARAM3 Parameters
Value Description
1 This contact selected

2 All contacts selected

3 Forward to last selected

&PARAM4
(scope)

Returns a value corresponding to the setting of the Primary and Additional check
boxes on the Merge Forms dialog box when the Edit, Link, Print, or Fax button
was selected.

&PARAM4 Parameters
Value Description
1 Primary checked

2 Additional checked

3 Both Primary and Additional checked

&PARAM5
(flags)

Returns a value corresponding to the status of the Link to Doc, Save History,
and/or Allow Hot Link check boxes on the Merge Forms dialog box. In addition,
the returned value determines whether the form was merged as the result of an
Automated Processes action.
Returns a seven-character string. Each position of the string can contain either 0,
indicating the item was not checked (or Automated Processes is not active), or 1,
indicating the item was checked (or Automated Processes is active).

&PARAM5 Parameters
Position Description
1 Link to Doc
2 Save History

Integrating With GoldMine

 235

Position Description
3 Allow Hot Link
4 Unused

5 Unused

6 Unused

7 Automated Processes status

&PARAM6
(LinkDoc
record
number)

Returns a value containing the record number of the last Linked Document
supplementary record created as a result of launching a Merge Form. When you
launch a merge form with Link to Doc selected, GoldMine creates a linked
document record to hold the saved document. This value can be saved and used to
update the linked document record by passing the record number to the LinkDoc
function.

&PARAM7
(contact
record
pointer)

Returns a pointer to a minimized contact record that is created when Print or Fax is
selected on the Merge Forms dialog box, and the Record Range is All Contacts
or Forward to Last. This value can then be passed to the RecordObj function to
further control a document merge from the linked application.

&PARAM8
(merge code
value)

Returns the merge code entered in the Merge code field of the Merge Forms
dialog box.

&PARAM9
(history
record)

Returns the RecNo or RecID of the history record created by GoldMine. This macro
is useful for updating the history record.

Macros for the GoldMine License
The following macros return data for the current GoldMine license. The descriptions
for each macro include the corresponding field name from the form that appears in
the Registration tab of the GoldMine Net-Update window. For details on the Net-
Update process, see “Updating your Copy of GoldMine” in the online Help.

&LicInfoLicTo Returns the Organization entry from the registration form.

&LicInfo_Contact Returns the Contact Name entry from the registration form.

&LicInfo_LicEmail Returns the E-mail address entry from the registration form.

&LicInfo_Phone Returns the telephone number entry from the first Phone/Fax field.

&LicInfo_Fax Returns the fax number entry from the second Phone/Fax field.

&LicInfo_Address1 Returns the Address1 entry from the registration form.

&LicInfo_Address2 Returns the Address2 entry from the registration form.

&LicInfo_City Returns the city entry from the first City/State field.

&LicInfo_State Returns the state or province entry from the second City/State field.

&LicInfo_Zip Returns the ZIP Code entry from the first Zip/Country field.

Integrating With GoldMine

236

&LicInfo_Country Returns the country entry from the second Zip/Country field.

Controlling the GoldMine User Interface
There are a number of commands that allow the programmatic control of the
GoldMine user interface. For example, menu commands can be executed; controls
can be populated, enabled, or disabled; and windows can be allowed to launch or
vetoed.

There are three general groups of commands to accomplish these tasks. The first
group of commands provides information as to the windows and dialogs available
to be controlled and the methods to subscribe to events concerning those windows.
The second group of commands manipulates the controls on GoldMine’s windows
and dialog boxes. The final group is event methods that are implemented in the
intregration to handle events that are raised based on the events subscribed to.

 The events in the GoldMine.UI class require a command to be called to
subscribe to the desired event. The events in the GoldMine.RecObj class
and the GoldMine.GMSystemEvents class do not require subscription.

Getting Window Information
The GetAvailableWindowsList and GetActiveWindowsList commands return
information about the available and active windows in GoldMine. This information
is needed to supply data to the event subscription commands and control
manipulation commands.

GETAVAILABLEWINDOWSLIST
GetAvailableWindowsList returns all of the available GoldMine windows in XML
format.

SYNTAX

XML <GMAPI call="GetAvailableWindowsList"/>

RETURNED XML

The XML returned is a long list of available windows for GoldMine. It has the
following format. This represents a truncated list of available windows. The actual
list is too extensive to list in this document. All window names are descriptive and
self-explanatory as to which window they represent. Send the
GetAvailableWindowList command for a complete list of windows.

<GMAPI call="GetAvailableWindowsList">

<status code="1">Success</status>

<data name="WindowsList">

<data name="window">DIALOGFILEDFOLDERPROPERTIES</data>

<data name="window">DIALOGMAILSEARCH</data>

<data name="window">DIALOGEMAILACCNTPROPS</data>

Integrating With GoldMine

 237

<data name="window">DIALOGEMAILAUTOFILEMONTH</data>

<data name="window">DIALOGDIGITALIDEXPORTPRIVATE</data>

<data name="window">DIALOGSOFTPHONE</data>

<data name="window">DIALOGSIP_SP_SETTINGS</data>

</data>

</GMAPI>

GETACTIVEWINDOWSLIST
The GetActiveWindowsList supplies detailed information regarding the windows
and dialog boxes currently active in GoldMine.

SYNTAX

XML <GMAPI call="GetActiveWindowsList"/>

RETURNED XML

Below is an example XML document describing one active window, the current
contact screen. For an accurate representation of the window you wish to control,
call GetActiveWindowsList with that window active. Doing so will provide a
reference for programming your integration.

All window elements are stored in the WindowsList element. Each Window has
child elements providing detailed information about the window. Some child
elements store additional child elements when further nesting is required to provide
all properties of the windows and the controls they contain. Commands that
manipulate the controls on a window expect the handle the parent window (hwnd)
and the control’s id, along with the properties of the control that are being changed.
Retrieve the hwnd and the control id from the GetActiveWindowsList command.

<GMAPI call="GetActiveWindowsList">
<status code="1">Success</status>

<data name="WindowsList">

<data name="window">

<data name="hWnd">197868</data>

<data name="WindowName">OBJECTCURRENTGMRECORD</data>

<data name="WindowInternalName">OBJECT: GMRECORD</data>

<data name="Caption">FrontRange Solutions, Inc.</data>

<data name="WinType">Window</data>

<data name="WindowRect">

<data name="Left">140</data>

<data name="Right">722</data>

<data name="Bottom">484</data>

<data name="Top">81</data>

</data>

<data name="ClientRect">

<data name="Left">144</data>

<data name="Right">718</data>

<data name="Bottom">480</data>

Integrating With GoldMine

238

<data name="Top">111</data>

</data>

<data name="Controls">

<data name="msctls_updown32">

<data name="Enabled">1</data>

<data name="Visible">1</data>

<data name="ParentID">197868</data>

<data name="hWnd">1770672</data>

<data name="ID">700</data>

</data>

<data name="msctls_updown32">

<data name="Enabled">1</data>

<data name="Visible">1</data>

<data name="ParentID">197868</data>

<data name="hWnd">66798</data>

<data name="ID">704</data>

</data>

<data name="gmWndBrowse">

<data name="Enabled">1</data>

<data name="Visible">1</data>

<data name="ParentID">197868</data>

<data name="hWnd">66812</data>

<data name="ID">1003</data>

<data name="Text">History of FrontRange Solutions,
 Inc.</data>

<data name="Controls">

<data name="ScrollBar">

<data name="Enabled">1</data>

<data name="Visible">1</data>

<data name="ParentID">66812</data>

<data name="hWnd">66814</data>

<data name="ID">100</data>

</data>

</data>

</data>

</data>

</data>

</GMAPI>

Registering for Events
Before you can receive events from the GoldMine.UI class, you need to subscribe to
the specific events you wish to receive for the desired windows.

 When using Visual Basic 6.0, be sure to declare your GoldMine objects
using the WithEvents qualifier.

Integrating With GoldMine

 239

 Dim WithEvents GMObj as GoldMine.UI

REGISTERVETOWINDOWLAUNCH
RegisterVetoWindowLaunch subscribes to an event for the specified window giving
the integration the opportunity to either veto or allow the window launch.

SYNTAX

XML

<GMAPI call="RegisterVetoWindowLaunch" >
 <data name=”Window”> DIALOGSCHEDULEDEFAULT</data>
 <data name=”Monitor”>1</data>
</GMAPI>

PARAMETERS

Window: the name of the window to monitor. The GetAvailableWindowsList
 command provides valid window names.

 Only dialog boxes can be vetoed. For example, the schedule and complete
windows are dialog boxes. Core GoldMine windows cannot be vetoed (the
record object, the email center, etc)

Monitor: specifies to either begin monitoring for the event (1) or to unsubscribe from
 the event (0).

RETURNED XML

The following XML is returned:
<GMAPI call="RegisterVetoWindowLaunch">

<status code="1">Success</status>

</GMAPI>

For information on handling the event, see Handling GoldMine.UI Events below.

REGISTERWINDOWUPDOWN
RegisterWindowUpDown subscribes to an event for the specified window notifying
the integration when the desired window is launching or closing.

SYNTAX

XML

<GMAPI call="RegisterWindowUpDown" >
 <data name=”Window”> DIALOGSCHEDULEDEFAULT</data>
 <data name=”Monitor”>1</data>
</GMAPI>

PARAMETERS

Window: the name of the window to monitor. The GetAvailableWindowsList
 command provides valid window names.

Monitor: specifies to either begin monitoring for the event (1) or to unsubscribe from
 the event (0).

Integrating With GoldMine

240

RETURNED XML

The following XML is returned:
<GMAPI call="RegisterWindowUpDown">

<status code="1">Success</status>

</GMAPI>

For information on handling the event, see Handling GoldMine.UI Events below.

REGISTERCOMMANDEXEC
RegisterCommandExec is used to subscribe to events raised when a particular
control is manipulated on the specified window. For example, your application can
receive notification when the user combo (dropdown) box is changed on the
Schedule a Call dialog.

SYNTAX

XML

<GMAPI call="RegisterCommandExec">
 <data name="Window">DialogScheduleDefault</data>
 <data name="ControlID">1</data>
 <data name="CommandID">0</data>
 <data name="Monitor">1</data>
</GMAPI>

PARAMETERS

Window: The name of the window to monitor. The GetAvailableWindowsList
 command provides valid window names.

ControlID: The ID of the control to monitor. This ID is provided in the child
 elements for the specified window provided by the
 GetAvailableWindowsList.

CommandID: The type of event to monitor (i.e. button clicked). The possible values
for the CommandID are enumerated within the GoldMine object.
Provided notification command ID’s include ButtonStates,
ComboBoxStates, EditControlNotifications, and ListBoxNotifications.

 The CommandID enumerations can be viewed in the Object Browser in
Visual Basic 6.0

Monitor: Specifies to either begin monitoring for the event (1) or to unsubscribe from
 the event (0).

RETURNED XML

The following XML is returned:
<GMAPI call="RegisterCommandExec">

<status code="1">Success</status>

</GMAPI>

For information on handling the event, see Handling GoldMine.UI Events below.

Integrating With GoldMine

 241

REGISTERTABDETAILSEVENTS
RegisterTabDetailsEvents is used to subscribe to events raised when a particular
Record Object Tab is manipulated. For example, your application can receive
notification when the user clicks on an item in a tab, but without the item being
zoomed or opened.

SYNTAX

XML
<GMAPI call="RegisterTabDetailsEvents">
 <data name="Monitor">1</data>
</GMAPI>

PARAMETERS

Monitor: Specifies to either begin monitoring for the event (1) or to unsubscribe from
 the event (0).

The following tab events are monitored:

Event Data Passed
AdditionalContactClick RecID,AccountNo,Reference,Phone,Contact
AdditionalContactEditClick (7.5 or higher) RecID,AccountNo,Reference,Phone,Contact
AdditionalContactNewClick (7.5 or higher) AccountNo (of the contact it will be attached to)
DetailsClick RecID,AccountNo,Type,Reference
DetailsEditClick (7.5 or higher) RecID,AccountNo,Type,Reference
DetailsNewClick (7.5 or higher) AccountNo
ReferralClick RecID,LinkedRecID,LinkedAccountNo,Referral,Reference
ReferralAddClick RecID (the recid of the referrer,not the referree)
ReferralEditClick (7.5 or higher) RecID,LinkedRecID,LinkedAccountNo,Referral,Reference
LinkedDocClick RecID,FileName,Sync,UserName
LinkedDocAddClick Returns Account No of current contact
LinkedDocEditClick (7.5 or higher) RecID,FileName,Sync,UserName
PendingEditClick (7.5 or higher) RecID,AccountNo,RecType,UserName
PendingClick RecID,AccountNo,RecType,UserName
ScheduleNew (7.5 or higher) AccountNo,RecType,UserName
HistoryEditClick (7.5 or higher) RecID,AccountNo,RecType,UserName
HistoryClick RecID,AccountNo,RecType,UserName

The following Case tab events are also monitored. Each event returns the RecID of
the selected case:

Event (All are 8.0 or higher only) User Action Returns
CaseReassign Reassign the case RecID
CaseEscalate Escalate the case RecID
CaseResolve Resolve the case RecID
CaseAbandon Abandon the case RecID
CaseGoto Open the case RecID
CaseSaveAsTemplate Save the case as a template RecID
CaseDelete Delete the case RecID

Integrating With GoldMine

242

ADDITIONALCONTACTCLICK

RETURNED XML

The following XML is returned for AdditionalContactClick:
<GMAPI event="AdditionalContactClick">

 <RecID>99UZA3O%R*O%H?$</RecID>

 <AccountNo>A1121345737(>C9^HBob</AccountNo>

 <Reference/>

 <Phone/>

 <Contact>Frances</Contact>

</GMAPI>

PARAMETERS

RecID: The record ID for the additional contact.

AccountNo: The account number of the parent contact.

Reference: The reference field value.

Phone: The phone field value.

DETAILSCLICK

RETURNED XML

The following XML is returned for DetailsClick:
<GMAPI event="DetailsClick">

 <RecID>99UZC5R(*2!2H?$</RecID>

 <AccountNo>A1121345737(>C9^HBob</AccountNo>

 <Type>E-mail Address</Type>

 <Reference>some.email@domain.com</Reference>

</GMAPI>

PARAMETERS

RecID: The record ID for the detail.

AccountNo: The account number of the contact.

Type: The type of the detail.

Reference: The reference field value.

PENDINGCLICK

RETURNED XML

The following XML is returned for PendingClick:
<GMAPI event="PendingClick">

 <RecID>BA5OXQT%ZO9K]WV</RecID>

Integrating With GoldMine

 243

 <AccountNo>A1121345737(>C9^HBob</AccountNo>

 <RecType>C</RecType>

 <UserName>GUY</UserName>

</GMAPI>

PARAMETERS

RecID: The record ID for the pending item.

AccountNo: The account number of the contact.

RecType: The record type of the pending item.

UserName: The owner name.

HISTORYCLICK

RETURNED XML

The following XML is returned for HistoryClick:
<GMAPI event="HistoryClick">

 <RecID>BA4U3BK%BK!J]WV</RecID>

 <AccountNo>A1121345737(>C9^HBob</AccountNo>

 <RecType>L</RecType>

 <UserName>GUY</UserName>

</GMAPI>

PARAMETERS

RecID: The record ID for the history item.

AccountNo: The account number of the contact.

RecType: The record type of the history item.

UserName: The owner name.

LINKEDDOCCLICK

RETURNED XML

The following XML is returned for LinkedDocClick:
<GMAPI event="LinkedDocClick">

 <RecID>BAAVH43(C?LC]WV</RecID>

 <FileName>C:\documents and settings\john stillman\my
documents\visual studio projects\gmdev\bin\debug\MailBox\Attach\There
ya go2.doc</FileName>

 <Sync>1</Sync>

 <UserName>GUY</UserName>

</GMAPI>

Integrating With GoldMine

244

PARAMETERS

RecID: The record ID for the linked document.

FileName: The path to the linked document.

Sync: 1 or 0 for is the doc synced.

UserName: The last user to use the document (not the owner).

For information on handling these events, see Handling GoldMine.UI Events below.

Handling GoldMine.UI Events
There are four events in the GoldMine.UI class that can be utilized. In order to be
notified of the events, the integrating application must register with GoldMine via
the above commands.

This section will show examples of handling these events in VB and VB.NET. The
method to handle the events may vary depending on the development environment
being used.

NOTIFYCONTROLCOMMAND
NotifyControlCommand is the event that notifies a client application that a button
has been pressed, a checkbox marked, or any other control change/activation event.
Register for this event by calling RegisterCommandExec.

PARAMETERS

sWindowName: This is a string (BSTR) that contains the nam of the window being
called.

ControlID: a long that contains the ID of the control that is notifying.

CmdID: a long that contains the command that is being triggered

HWnd: a long that represents the hWnd of the Parent to the control.

VETOWINDOW
The VetoWindow event is used to notify a client application that a window or dialog
is requesting to be launched. The client application returns a Boolean answer as to
whether or not to allow the window/dialog to launch. Subscribe to this event by
calling RegisterVetoWindowLaunch.

PARAMETERS

sWindowName: a string (BSTR) that contains the name of the window being called.

 Delphi does not support functions (a sub that returns a value) in its COM
handler. Within the VetoWindow event handler, Delphi users need to set a
special property within the GoldMine.UI class to indicate whether or not to
veto the window.

Example:
 GMObj.VetoWindowDelphi:=true

Integrating With GoldMine

 245

EXAMPLE

The following example uses Visual Basic 6.0. After declaring your object using the
WithEvents keyword, Visual Basic will place the name of the object in the drop
down on the upper left of your code window. Select your object from that drop
down to view the list of event handling subs/functions available for that object. For
the VetoWindow event the function will be called Objectname_VetoWindow. For an
example handling an event in VB.NET using delegate functions, see the
GoldMineShutdown event for the GoldMine.GMSystemEvents class.

Private Function GMObj_VetoWindow(ByVal sWindowName As String) As
Boolean

 If sWindowName = "DIALOGSCHEDULEDEFAULT" Then

 Dim sResult As String

 Dim iRes As Integer

 sResult = GMObj.ExecuteCommand("<GMAPI call=""MsgBox""><data
 name=""Message"">Do you want to bring up the GoldMine
 schedule window?</data><data
 name=""Style"">4</data></GMAPI>")

 Dim docResult As DOMDocument40

 Set docResult = New DOMDocument40

 docResult.loadXML sResult

 Dim elRoot As IXMLDOMElement

 Set elRoot = docResult.documentElement

 Dim att As IXMLDOMNode

 Set att = elRoot.childNodes(0)

 If att.Attributes(0).baseName = "code" Then

 iRes = att.Text

 End If

 If iRes = 6 Then

 GMObj_VetoWindow = False

 Else

 GMObj_VetoWindow = True

 End If

 Set docResult = Nothing

 Set elRoot = Nothing

 Set att = Nothing

 End If

End Function

Integrating With GoldMine

246

WINDOWUPDOWN
The purpose of the WindowUpDown event is to notify the client application that a
particular window is coming up or shutting down. This does not apply to the main
GoldMine application window. To be notified that GoldMine is shutting down, use
the GoldMineShutdown event in the GoldMine.GMSystemEvents class.

This event is useful for a client application to perform additional processing of
record data after the user has submitted it by pressing OK on a dialog box. For
example, data can be linked to other third party applications in real time.

PARAMETERS

sName: a string (BSTR) that contains the name of the window being called.

bUp: a Boolean which represents True=Up and False=Down

GMEVENT
GMEvent is an omni-event holder that can provide information about what is
happening in the GoldMine application, and in some cases it can affect an action in
GoldMine.

VARIANT_BOOL GMEvent(VARIANT_BSTR sXML)

sXML is XML that describes the event - possible events are UI events:

VetoWindow - same as the 6.7 event - looks like
 <GMAPI event="VetoWindow">

 <WindowName>NAME_OF_WINDOW_HERE</WindowName>

 </GMAPI>

if event returns TRUE to GM then the window will not be launched

WindowUpDown - same as the 6.7 event - returns
 <GMAPI event="WindowUpDown">

 <WindowName>NAME_OF_WINDOW_HERE</WindowName>

 <Up/>

 <WindowhWnd>399692</WindowhWnd>

 </GMAPI>

if the window is being closed, then a Down node will appear instead of the Up node

NotifyControlCommand - same as the 6.7 event - returns
 <GMAPI event="NAME_OF_WINDOW_HERE">

 <WindowName>DIALOGSCHEDULEDEFAULT</WindowName>

 <ID>1</ID>

 <Command>0</Command>

 <WindowhWnd>97256300</WindowhWnd>

 </GMAPI>

the following are the new events specific to 7.0 and only can be used with the
GMEvent structure

Integrating With GoldMine

 247

CalendarMonthView_DaySelectedWithActivities - event to show when a user has
clicked a day with activities in the month view

returns
 <GMAPI event="CalendarMonthView_DaySelectedWithActivities">

 <Date>20050624</Date>

 <Timed>0</Timed>

 <Timeless>1</Timeless>

 <Events>0</Events>

 </GMAPI>

Date - is the date clicled in YYYYMMDD format

Timed - the number of timed activities on that day

Timeless - the number of timeless activities

Events - the number of events on that day

CalendarDayActivityHighlighted - for week and day views, shows the details of an
activity that a user has clicked on

 <GMAPI event="CalendarDayActivityHighlighted">

 <ActvAccNo>A4032327210$Z7/!R </ActvAccNo>

 <CalRecID>B6AANW4#Y>N(]WV</CalRecID>

 <Contact>Dan Gorentz</Contact>

 <CreatedBy>GUY </CreatedBy>

 <User>GUY </User>

 </GMAPI>

ActvAccNo - the contact AccountNo that this cal entry belongs to

CalRecID the record id of the calendar entry

 Contact - the contact field for the record

 CreatedBy - the user that created the record

 User - the user its assigned to

VetoCalendarChangeView - can block the view from changing tabs
 <GMAPI event="VetoCalendarChangeView">

 <PrvView>1</PrvView>

 <NewView>2</NewView>

 </GMAPI>

View are enumerated as follows

 0 - Day View

 1 - Week View

 2 - Month

 3 - Year

 4 - Planner

Integrating With GoldMine

248

 5 - Outline

 6 - PegBoard

PrvView - the view it is changing from

NewView - the view it is changing to

Returning TRUE to this event blocks the view change

CalendarUserSelectionChanged - tells the consumer that the user selection of visible
user events has changed.

 <GMAPI event="CalendarUserSelectionChanged">

 <Users>GUY,MASTER</Users>

 <CurrentView>0</CurrentView>

 </GMAPI>

Users - a comma delimited list of users that are shown in the calendar.

CurrentView - the current view

VetoCalendarNextClick - can block the user from hitting the next button

 returns
 <GMAPI event="VetoCalendarNextClick"/>

returning TRUE to this event keeps the user on the current selection

VetoCalendarPreviousClick - can block the user from hitting the previous button
 <GMAPI event="VetoCalendarPreviousClick"/>

returning TRUE to this event keeps the user on the current selection

Manipulating Controls Programatically
The GoldMine.UI class responds to various commands to programmatically
manipulate the controls on GoldMine’s dialog boxes.

To specify the control to change or activate, read the parent window’s handle
(hwnd) and the control’s ID from the GetActiveWindowsList command. The control
ID’s will always stay the same and will be unique only to the scope of the dialog they
exist on. In other words, the GoldMine user drop down box on the Schedule a Call
dialog will always have the same control ID. This control ID can be discovered
during the design phase of your application. Use the control ID as the identifier for
checking the state of the control when reading the control properties from the
GetActiveWindowsList command.

PRESSBUTTON
Use PressButton to press a button on a known form.

Integrating With GoldMine

 249

SYNTAX

XML

GetActiveWindowsList returned a window with the following control:

<data name=”Button”>
 <data name=”Enabled”>1</data>
 <data name=”Visible”>1</data>
 <data name=”ParentID”>2232874</data>
 <data name=”hWnd”>987600</data>
 <data name=”ID”>2060</data>
 <data name=”Text”>&Activate</data>
</data>

To press this button, the following XML should be sent:

<GMAPI call=”PressButton”>
 <data name=”hWndParent”>2232874</data>
 <data name=”ID”>2060</data>
</GMAPI>

 Note that the hWndParent parameter of the PressButton command
corresponds to the ParentID returned for the control from
GetActiveWindowsList, not hWnd, which is the hWnd of the control.

Also, the ID parameter corresponds to the ID parameter of the control
returned by the GetActiveWindowsList, not the hWnd.

PARAMETERS

hWndParent: the handle to the parent window containing the control. Corresponds
to the ParentID element returned for the control by the
GetActiveWindowsList command.

ID: the ID of the control. Corresponds to the ID element returned for the control by
the GetActiveWindowsList command.

SETCONTROLTEXT
SetControlText sets the text property of the specified control.

Integrating With GoldMine

250

SYNTAX

XML

The Filters and Groups dialog contains the following control, the SQL
field:

<data name=”Edit”>
 <data name=”Enabled”>1</data>
 <data name=”Visible”>1</data>
 <data name=”ParentID”>398370</data>
 <data name=”hWnd”>726100</data>
 <data name=”ID”>104</data>
</data>

To set the text for this control, the following XML should be sent:

<GMAPI call=”SetControlText”>
 <data name=”hWndParent”>398370</data>
 <data name=”ID”>104</data>
 <data name=”Text”>SELECT * FROM contact1</data>
</GMAPI>

PARAMETERS

hWndParent: the handle to the parent window containing the control. Corresponds
to the ParentID element returned for the control by the
GetActiveWindowsList command.

ID: the ID of the control. Corresponds to the ID element returned for the control by
the GetActiveWindowsList command.

Text: the text desired for the control.

Integrating With GoldMine

 251

SETCHECKBOX
SetCheckBox sets the value of a check box control.

SYNTAX

XML

A dialog has the following control:

<data name=”Button”>
 <data name=”Enabled”>1</data>
 <data name=”Visible”>1</data>
 <data name=”ParentID”>199202</data>
 <data name=”hWnd”>199212</data>
 <data name=”ID”>111</data>
 <data name=”Text”>&Master rights</data>
</data>

To set the checkbox, the following XML should be sent:

<GMAPI call=”SetCheckBox”>
 <data name=”hWndParent”>199202</data>
 <data name=”ID”>111</data>
 <data name=”Checked”>1</data>
</GMAPI>

PARAMETERS

hWndParent: the handle to the parent window containing the control. Corresponds
to the ParentID element returned for the control by the
GetActiveWindowsList command.

ID: the ID of the control. Corresponds to the ID element returned for the control by
the GetActiveWindowsList command.

Checked: 1 to check the checkbox, 0 to uncheck

SELECTRADIO
The SelectRadio command allows an application to set a radio button array, or a
single item. While the command allows a single radio button to be set, this is not the
best practice. Doing so results in more than one radio button selected in a group or
radio buttons.

Integrating With GoldMine

252

SYNTAX

XML

A dialog has the following two controls:

<data name=”Button”>
 <data name=”Enabled”>1</data>
 <data name=”Visible”>1</data>
 <data name=”ParentID”>330708</data>
 <data name=”hWnd”>134108</data>
 <data name=”ID”>532</data>
 <data name=”Text”>&Dark Background</data>
</data>

<data name=”Button”>
 <data name=”Enabled”>1</data>
 <data name=”Visible”>1</data>
 <data name=”ParentID”>330708</data>
 <data name=”hWnd”>134106</data>
 <data name=”ID”>533</data>
 <data name=”Text”>&Bright Background</data>
</data>

To select the Dark Background radio and unselect the Bright
Background, the following XML should be sent:

<GMAPI call=”SelectRadio”>
 <data name=”RadioButton”>
 <data name=”hWndParent”>199516</data>
 <data name=”ID”>532</data>
 <data name=”Value”>1</data>
 </data>
 <data name=”RadioButton”>
 <data name=”hWndParent”>199516</data>
 <data name=”ID”>533</data>
 <data name=”Value”>0</data>
 </data>
</GMAPI>

PARAMETERS

hWndParent: the handle to the parent window containing the control. Corresponds
to the ParentID element returned for the control by the
GetActiveWindowsList command.

ID: the ID of the control. Corresponds to the ID element returned for the control by
the GetActiveWindowsList command.

Value: 1 to select the radio button, 0 to unselect

SETLISTBOX/SETCOMBOBOX
Use the SetListBox/SetComboBox command(s) to select an item in a listbox on a
GoldMine dialog box. The client application can specify either a text value or an
index. If a text value is used, the value must already exist within the list.

Integrating With GoldMine

 253

SYNTAX

XML

A dialog has the following control:

<data name=”ComboBox”>
 <data name=”Enabled”>1</data>
 <data name=”Visible”>1</data>
 <data name=”ParentID”>330654</data>
 <data name=”hWnd”>68972</data>
 <data name=”ID”>537</data>
 <data name=”Text”>MMM d, yy </data>
</data>

To select a different item in this combobox, use the following XML:

Using an Index:

<GMAPI call=”SetComboBox”>
 <data name=”hWndParent”>330654</data>
 <data name=”ID”>537</data>
 <data name=”Index”>0</data>
 </GMAPI>

Using a Text value:
<GMAPI call=”SetComboBox”>
 <data name=”hWndParent”> 330654</data>
 <data name=”ID”>537</data>
 <data name=”Value”>MMMM dd, yyyy</data>
</GMAPI>

 SetComboBox and SetListBox have been grouped together in this
document because they share the same parameters and functionality for
their respective control. However, SetComboBox should only be used for
comboboxes and SetListBox for listboxes.

PARAMETERS

hWndParent: the handle to the parent window containing the control. Corresponds
to the ParentID element returned for the control by the
GetActiveWindowsList command.

ID: the ID of the control. Corresponds to the ID element returned for the control by
the GetActiveWindowsList command.

Value: the TEXT value to select in the combobox or listbox. The value must already
exist in the list of the control.
OR

Index: the index number of the item to be selected in the combo box or list box.

SELECTTAB
Use SelectTab to select a particular tab on a dialog box. This command does not
select the tabs on the contact record. Use the SetRoTabX command for that purpose.

Integrating With GoldMine

254

SYNTAX

XML

A dialog has the following control:

<data name=”SysTabControl32”>
 <data name=”Enabled”>1</data>
 <data name=”Visible”>1</data>
 <data name=”ParentID”>789580</data>
 <data name=”hWnd”>330824</data>
 <data name=”ID”>12320</data>
</data>

To select the tab with index of 1:

<GMAPI call=”SelectTab”>
 <data name=”hWndParent”>789580</data>
 <data name=”ID”>12320</data>
 <data name=”Index”>1</data>
 </GMAPI>

 The SelectTab command may not function as expected on all tabs within
GoldMine. Due to the way some dialog boxes were developed, changing
the tab with the SelectTab command may not cause the correct controls to
be displayed on the desired tab. Always test the SelectTab command on
the dialog box you wish to execute it for during development of your
application to verify it correctly switches the tab.

PARAMETERS

hWndParent: the handle to the parent window containing the control. Corresponds
to the ParentID element returned for the control by the
GetActiveWindowsList command.

ID: the ID of the control. Corresponds to the ID element returned for the control by
the GetActiveWindowsList command.

Index: the index number of the tab to be selected.

ENABLECTRL
The EnableCtrl command allows the programmer to enable or disable any control.

Integrating With GoldMine

 255

SYNTAX

XML

A dialog has the following control:

<data name=”Button”>
 <data name=”Enabled”>1</data>
 <data name=”Visible”>1</data>
 <data name=”ParentID”>789580</data>
 <data name=”hWnd”>1117262</data>
 <data name=”ID”>1</data>
 <data name=”Text”>OK</data>
</data>

To disable the button:

<GMAPI call=”EnableCtrl”>
 <data name=”hWndParent”> 789580</data>
 <data name=”ID”>1</data>
 <data name=”Enable”>0</data>
 </GMAPI>

PARAMETERS

hWndParent: the handle to the parent window containing the control. Corresponds
to the ParentID element returned for the control by the
GetActiveWindowsList command.

ID: the ID of the control. Corresponds to the ID element returned for the control by
the GetActiveWindowsList command.

Enable: set to 1 to enable the control, 0 to disable.

Executing a Menu Command
The MenuCommand function allows the programmatic execution of a menu item, as
if the user has clicked the item in the GoldMine menu.

SYNTAX

XML

<GMAPI call="MenuCommand" >FileNewRecord</GMAPI>
OR

<GMAPI call=”MenuCommand”>
 <data name=”MenuCommand”>FileNewRecord</data>
</GMAPI>

Integrating With GoldMine

256

MenuCommand accepts one parameter, MenuCommand. This parameter can be any
of the following menu commands. The command name is descriptive and indicates
which menu item it corresponds to:

FileNewRecord FileNewRecordToExistingCompany FileNewRecordAndOrgChart

FileNewRecordToExistingOrgChart FileNewRecordByType FileOpenDatabase

FilePrint1Report FileNewDatabase FileMaintainDatabases

FileBackupDatabases FileRestoreDatabases FilePrintReports

FileSetupPrinter SynchronizationOneButtonSync SynchronizationWizard

GoldSyncAdministrationCenter SynchronizeWithOutlook SynchronizeWithPilot

SynchronizeWithWindowsCEPDA FileCopyMoveRecords ConfigureUsersSettings

ConfigureUserGroups ConfigureResources ConfigureRecordType

ConfigureCustomScreens ConfigureCustomFields ConfigureHTMLTab

ConfigureSyncSettings ConfigureLicenseManager ConfigureMyGoldMine

LogAway LogInAnotherUser LogInServiceSupport

Exit EditUndo EditCut

EditCopy EditPaste EditCopyContactDetails

EditContact DeleteContact Record-related Settings

Contact Details RecordDetailsOrganization RecordDetailsSummary

RecordDetailsFields RecordDetailsHTMLTab RecordDetailsNotes

RecordDetailsContacts RecordDetailsDetails RecordDetailsReferrals

RecordDetailsPending RecordDetailsHistory RecordDetailsLinks

RecordDetailsMembers RecordDetailsTracks RecordDetailsOpptys

RecordDetailsProjects RecordDetailsTickets RecordDetailsResize

TimerStart TimerStop TimerReset

TimerRestart EditToolbars EditCustomTemplates

EditPreferences ViewMyGoldMine ViewNewContactWindow

ViewContactGroups ViewCalendar ViewActivityList

ViewEmailCenter ViewEmailWaitingOnline ViewInfoCenter

ViewProjects ViewPersonalRolodex ViewLiteratureFulfillment

SalesToolsOpportunities SalesToolsScripts AnalysisSales

AnalysisStatistical AnalysisForecast AnalysisGraphical

AnalysisLeads AnalysisQuota ViewGoldMineLogs

ViewSyncRetrievalLogs LookupCompany LookupContact

LookupLastName LookupPhone LookupZIPCode

LookupCity LookupState LookupCountry

LoookupAccountNo LookupKey1 LookupKey2

LookupKey3 LookupKey4 LookupKey5

Integrating With GoldMine

 257

LookupDetailRecords LookupEmailAddress LookupAdditionalContName

LookupFilters LookupSQLQueries TextSearchPrimaryFields

TextSearchNotes TextSearchAllFields TextSearchFieldsBelowTabs

GotoNextRecord GotoPreviousRecord GotoCycleLastViewedRecord
s

GotoLastRecord GotoRecordNumber GotoFirstRecord

DialPhone1 DialPhone2 GotoInternetSearch

DialFax RedialLastNumber DialPhone3

IncomingCall ContactInsertNote ManualDial

WriteMemoToContact WriteFAXtoContact WriteLetterToContact

ContactWriteCustomizeTemplates WriteCustomizeTemplates WriteMailMerge

EmailOutlookMessageToContact EmailPagerMessageToContact EmalMessageToContact

EmailCustomizeTemplates ContactTakePhoneMessage EmailMerge

ContactBrowseWebStie LinkFile ContactAssignProcess

ScheduleCall ScheduleNextAction AddDetail

ScheduleLiteratureRequest ScheduleForecastedSale ScheduleAppointment

ScheduleEvent ScheduleTodo ScheduleOtherAction

CompleteScheduledCall CompleteUnscheduledOutgoingCall ScheduleGoldMineEmail

CompleteMessage CompleteNextAction CompleteUnscheduledIncomi
ngCall

CompleteSale CompleteOtherAction CompleteAppointment

CompleteToDo CompleteLetterMemo CompleteEvent

CompletePendingActivities AutomatedProcessesExecute CompleteLiteratureRequest

AutomatedProcessesSetup ServerAgenstStart AutomatedProcessesRemov
eTrack

ActImport OutlookImport ServerAgentsAdministrator

ExportContactRecords ImportZIPCodes ImportContactRecords

XMLImport XMLExport RunQSW

ICALExport CalPublish ICALImport

ToolsCleanupDOSNotes ToolsOptimizeOrgChartAccess PublishBusyTime

ToolsTerritoryRealignment MergePurgeWizard ToolsGlobalReplaceWizard

MergeTaggedRecords ToolsDeleteRecordsWizard MergeVisibleRecords

ToolsStrategicSolutions ToolsBDEAdministrator ToolsSyncSpy

WindowTile WindowTileWide ToolsSystemPerformance

WindowArrangeIcons WindowCloseAll WindowCascade

WindowStatusBar WindowTaskBar WindowToolBar

HelpHelpTopics HelpReleaseNotes WindowBackgroundSettings

HelpNewsgroups HelpUpdateGoldMine HelpGoldMineWebSite

Integrating With GoldMine

258

CampaignManager LeadCenter HelpAbout

WebImportAdmin

RETURNED XML

The MenuCommand function returns after the menu command is executed. It does
not wait for any events on the resulting window before returning. The returned
XML for a successful call will be:

<GMAPI call="MenuCommand"><status code="1">The command was
executed.</status></GMAPI>

In the event that there is a modal window active in the GoldMine user-interface, the
COM Server cannot launch another window (as would be the case if attempting to
launch a menu item within the interface). When that occurs, the following XML is
returned to indicate a failure:
<GMAPI call="MenuCommand">
 <status code="0">Access is denied.</status>
</GMAPI>

Opening a Mail Record
The OpenMailRecord function opens a mail record in the mail center when the
RecID of the mail item is passed.

SYNTAX

XML

To open a mail record:

<GMAPI call=”OpenMailRecord”>
 <data name=”RecID”> 789580</data>
 </GMAPI>

PARAMETERS

RecID: the record ID of the mail item.

RETURNED XML

The OpenMailRecord function returns after the command is executed. The returned
XML for a successful call will be:

<GMAPI call="OpenMailRecord"><status code="1">The command was
executed.</status></GMAPI>

In the event that the mail record is already open, the following XML is returned to
indicate a failure:
<GMAPI call="OpenMailRecord">
 <status code="-1">Already open.</status>
</GMAPI>

In the event that the system cannot open the mail record, the following XML is
returned to indicate a failure:

Integrating With GoldMine

 259

<GMAPI call="OpenMailRecord">
 <status code="0">Failure.</status>
</GMAPI>

Setting a Selected Record in a GoldMine Grid (GoldMine 8.0 or
higher)

SetGridRecID allows you to set the selected record in a given GoldMine grid.

In the following example, you can set the Linked Document tab to a certain row:

1. We call SetROTab with a value of 10 to set the Link tab to focus

2. Perform GetActiveWindowList

3. Look for the gmWndBrowse object to retain it’s hWnd value.

4. Call the SetGridRecID function (see example)

5. If you had registered for Tab events, then you would also get the event
 <GMAPI event="LinkedDocClick">

 <RecID>CHNHXID(2AAS]WV</RecID>

 <FileName></FileName>

 <Sync>1</Sync>

 <UserName>GUY</UserName>

 </GMAPI>

SYNTAX (EXAMPLE)

XML

To set a selected record in a grid:

<GMAPI call="SetGridRecID">
 <data name="hWnd">1057444</data>
 <data name="RECID">CHNHXID(2AAS]WV</data>

</GMAPI>

PARAMETERS

hWnd: The hWnd of the gmWndBrowse you wish to set.

RecID: The recid of the value in the list you wish to select. You must pass a valid
recid that is represented in the grid.

RETURNED XML

The returned XML for a successful call will be:
<GMAPI call=”SetGridRecID”>
 <status code=”1”>Success</status>
</GMAPI>

Returning Selected Records in a GoldMine Grid (8.0.1 or higher)
GetGridRecID returns the selected records in a given GoldMine grid.

Integrating With GoldMine

260

SYNTAX (EXAMPLE)

XML

To get selected records in a grid:

<GMAPI call="GetGridRecID">
 <data name="HWND">337700</data>
</GMAPI>

or

<GMAPI call="GetGridRecID">468730</GMAPI>

PARAMETERS

hWnd: The hWnd of the gmWndBrowse from which you wish to get selected recids.

RETURNED XML

The returned XML for a successful call will be:
GMAPI call="GetGridRecID">
 <status code="1">Success</status>
 <data name="Return">
 <data name="RecID">CGNPHUE)D0TV W<</data>
 </data>
</GMAPI>

Or if there are multiple items selected:
<GMAPI call="GetGridRecID">
 <status code="1">Success</status>
 <data name="Return">
 <data name="RecID">AO6R9GO$/X^1$M<</data>
 <data name="RecID">ANWYLNL%XV]& W<</data>
 <data name="RecID">AOCJ5LF)>ED0 W<</data>
 <data name="RecID">AOCJ5LF+Y-(8 W<</data>
 <data name="RecID">AOCJ5PO#E,5/ W<</data>
 <data name="RecID">AWUX7WW :U3Z W<</data>
 </data>
</GMAPI>

GoldMine.RecObj Class
The GoldMine.RecObj class contains only events. These events notify the client
application when the record object has changed, when a field has changed on the
contact record, or when the tab selected on the record object has changed. It is not
necessary to subscribe to these events, just implement the event handlers.

RECORDOBJECTHASCHANGED
The RecordObjectHasChanged event indicates when the contact displayed in
GoldMine has changed to a different contact. This does not indicate data changes.
This event is the equivalent of setting the LinkMode in Visual Basic to vbLinkNotify.

PARAMETERS

sCurrentRecord: a string that contains the AccountNo of the current record.

Integrating With GoldMine

 261

RECORDFIELDHASUPDATED
The RecordFieldHasUpdated event indicates when the value of a field in contact1 or
contact2 for the current contact has been updated. This event does NOT notify when
an Email Address or Web Site has changed.

PARAMETERS

sField: a string that contains the fieldname of the updated field.

sLabel: the local label (or global if no local label is specified) of the field.

ContactTableID: the ID number of the contact table. Will be 1 for contact1 and 2 for
contact2.

RECORDTABHASCHANGED
The RecordTabHasChanged event indicates when the user in GoldMine has selected
a different tab at the bottom of the contact record screen.

PARAMETERS

sCurrentTab: the numeric representation of the tab selected.

GoldMine.GMSystemEvents Class
The GoldMine.GMSystemEvents class contains one event, GoldMineShutDown,
indicating when the GoldMine application is shutting down. This gives the client
application an opportunity to clean up and shut down as well.

GOLDMINESHUTDOWN
The GoldMineShutDown event indicates when the GoldMine application is shutting
down. It has no parameters. Following is an example of implementing the
GoldMineShutDown event in VB.NET using a delegate function. For an example
implementing an event handler in Visual Basic 6.0, see the VetoWindow event for
the GoldMine.UI class on page 244.

Private Sub GMShutdown()

 MsgBox("GoldMine has closed", MsgBoxStyle.Information, "XML
API")

End Sub

Private Function CreateGMEventHandler() As Boolean

 Try

 'Here we try to setup an eventhandler for goldmine
shutdown

 'if we set this up before we're logged in it launches the
api

 'and mucks things up, here we create the varriable, and

 'assign it an event

 Dim GMEvent As New GoldMine.GMSystemEvents

Integrating With GoldMine

262

 AddHandler GMEvent.GoldMineShutDown, AddressOf GMShutdown

 Catch ex As Exception

 Return False

 End Try

 Return True

End Function

Integrating With GoldMine

 263

Business Logic Methods

GoldMine introduces Business Logic, a concept to simplify and streamline product
integration with GoldMine. Business Logic transactions wrap commonly used
procedures into a single call. For example, to attach a new detail to a record, you
simply execute the WriteDetail function.

Business Logic Functions and Name/Value Pairs
To make these Business Logic methods useful, developers need a mechanism for
passing multiple parameters to the various methods. GoldMine provides a set of
functions to control Name/Value containers in the GMXS32.DLL, described in
Chapter 3. Alternatively, all of the business logic functions are accessible via the
GoldMine XML API. The XML API uses all of the same business logic function
names and data names (Name/Value pairs).

This chapter describes the Business Logic methods available. These methods may be
called from the GMW_Execute function (GMXS32.DLL) or via the GoldMine XML
API (GMXMLAPI.DLL).

Controlling Database Session Handling
The SetSessionHandling function controls the way GoldMine handles database
sessions. The default, the safest method, is to open and close sessions for each
request. This can be changed to increase performance to keep sessions open. The
function accepts one name/value pair, KeepOpen. Its possible values are 1 or 0. The

Integrating With GoldMine

264

function returns one name/value pair, OldState, with possible values of 1 or 0, so
you know what was previously set prior to your change. Finally, the function
returns a status of either 0 on failure, or 1 on success. This function applies only to
the GMXS32.DLL.

Creating or Updating a Contact Record
WriteContact creates or updates a contact record. If RecID is passed as null, then a
record will be created. Otherwise, the record will be updated. You may also create a
new contact record with a RecID you provide. This function will respect record
curtaining and will not update areas of the contact record that the logged-in user
does not have permission to change. Contacts created through this function will
have the Automated Process marked to be attached to new records.

GOLDMINE API VERSION: 5.00.041

REQUIRED NAME/VALUE PAIRS

RecID is the record ID of the record to update. If null, a record will be created, unless
the ExternRecID or ExternAccNo name/value pairs are included.

OPTIONAL NAME/VALUE PAIRS

Any valid Contact1 or Contact2 field.

SPECIAL NAME/VALUE PAIRS

WriteContact Special NV Pairs
Name Description
Email E-mail address profile value. Additional e-mail addresses may be added to the

contact record by including this name/value pair with an existing RecID. Cannot
update any e-mail addresses with this function. See UpdateEmailAddress. Only
one address will be marked as primary. If additional addresses are added
through this function, they will not be primary unless the next name/value pair is
set.

PrimaryEmail Indicates to mark the specified e-mail address as primary. Set to 1 to mark
primary.

WebSite Web site detail value. Additional Web sites may be added to the contact record
by including this name/value pair with an existing RecID. Cannot update any
Web sites with this function. See UpdateWebSite.

NonUSAPhone International phone format is used if NonUSAPhone = 1, Default is 0.

WebUserName Web username to assign to this contact. For details, see “ContactLogin.”

WebPassword Web password to assign to this contact. For details, see “ContactLogin.”

ExternRecID User-supplied RecID to be used for a new record. RecID name/value pair must
be empty to use this functionality.

ExternAccNo User-supplied AccountNo to be used for a new record. RecID name/value pair
must be empty to use this functionality.

Integrating With GoldMine

 265

OUTPUT NAME/VALUE PAIRS

WriteContact Output NV
Record Description

RecID If new record created.

AccountNo AccountNo of the record

WRITECONTACT ERROR CODES

WriteContact Error Codes
Code Description

 1 Success

 0 General Failure

-1 Incomplete request to create based on external RecID

-2 Could not create a new record

-3 Could not create a new record based on external RecID.

-4 Could not commit to disk

-5 No access or could not lock record

-6 Record does not exist.

-7 External RecID already exists on this system.

Updating an E-mail Address
UpdateEmailAddress is used to update the value of an existing e-mail address detail
record.

GOLDMINE API VERSION: 5.50.10111

REQUIRED NAME/VALUE PAIRS

UpdateEmailAddress Required NV Pairs
Name Description

RecID RecID of the e-mail record to be modified
NewAddress New address to write

Integrating With GoldMine

266

OPTIONAL NAME/VALUE PAIRS

UpdateEmailAddress Optional NV Pairs
Name Description
Accountno Accountno of the contact the e-mail address is associated with.

MIME Set to “1” to use MIME when sending to this address.

RTF Set to “1” to use RTF when sending to this address.

Primary Set to “1” to mark this updated e-mail address as primary.

Wrap Set to “1” to wrap lines when sending to this address.

Updating a Web Site Record
The UpdateWebSite function is used to update the value of a Web Site detail record.

GOLDMINE API VERSION: 5.50.10111

NAME/VALUE PAIRS

UpdateWebSite NV Pairs
Name Description

RecID Web site record RecID—required

NewSite New Web site value to write—required

Primary Set to “1” to mark this Web site as the primary Web site for the contact record

Updating Notes of a Primary Contact Record
WriteContactNotes updates the Notes of a primary contact record and appends the
proper header information to the top of the Note. If both AccountNo and RecID are
passed, only AccountNo will be used. The Note header will use the current
date/time and default to the logged-in user name.

GOLDMINE API VERSION: 5.00.041

REQUIRED NAME/VALUE PAIRS

WriteContactNotes Required NV Pairs
Name Description
Notes Note text to add

AccountNo AccountNo of the Contact1 record to which to add notes. Not required if RecID is
used.

AccountNo AccountNo of the Contact1 record to which to add notes. Not required if RecID is
used.

RecID RecID of the contact1 record to which to add notes. Not required if AccountNo is used.

Integrating With GoldMine

 267

OPTIONAL NAME/VALUE PAIRS

UserID is the UserID used in the note header.

OUTPUT NAME/VALUE PAIRS

None.

Creating or Updating an Additional Contact Record
WriteOtherContact creates or updates an additional contact record. If RecID is null,
then a record will be created; otherwise, the record will be updated. When RecID is
passed as null, an AccountNo should be passed; otherwise, an unlinked record will
be created. In addition, a new additional contact may be created using a unique,
user-supplied RecID. If the logged-in user does not have master rights and the
contact record associated with the additional contact record is curtained, then no
new additional contact records or modifications will be allowed.

GOLDMINE API VERSION: 5.00.041

REQUIRED NAME/VALUE PAIRS

None.

OPTIONAL NAME/VALUE PAIRS

WriteOther ContactNotes Optional NV Pairs
Name Description
RecID RecID of the record to update. If null, a record will be created.

ExternRecID User-supplied RecID to be used for a new additional contact. The RecID and
ExternRecID name/value pairs are mutually exclusive. If the RecID pair is
supplied, this pair will be ignored.

AccountNo AccountNo of linked Contact1 record

Contact Contact name

Title Title

Ref Reference

Dear Salutation

Phone Phone number

Fax Fax number

Ext Extension

Address1 Address Line 1

Address2 Address Line 2

Address3 Address Line 3

City City

State State

Zip ZIP Code

Integrating With GoldMine

268

Name Description
Country Country

Notes Notes

LinkAcct Link Account RecID

SPECIAL NAME/VALUE PAIRS

WriteOtherContact Special Name/Value Pairs
Name Description
Email E-mail address of the additional contact

NonUSAPhone Set to 1 for a nonUSA phone format

UseMergeCodes Set to 1 if you want to set the Use Merge Codes option

MergeCodes Merge codes

ERROR CODES

WriteContact Error Codes
Code Description
1 Success

0 General Failure

-1 It will be a duplicate

-2 Couldn’t create external record

-3 Couldn’t find or lock the record

-4 Couldn’t write to the database

-5 No access to the contact linked to this record

OUTPUT NAME/VALUE PAIRS

RecID returns the new RecNo or RecID if a new record was created.

Creating or Updating a Detail Record
WriteDetail creates or updates a detail record. If RecID is null, then a record will be
created; otherwise, the record will be updated. When a RecID is passed as null to
create a record, an AccountNo should be passed; otherwise, an unlinked record will
be created. In addition, a new detail record may be created using a unique, user-
supplied RecID. If the logged-in user does not have master rights and the contact
record associated with the detail record is curtained, then no new detail records or
modifications will be allowed.

GOLDMINE API VERSION: 5.00.041

REQUIRED NAME/VALUE PAIRS

Detail is the name of the detail.

Integrating With GoldMine

 269

OPTIONAL NAME/VALUE PAIRS

WriteDetail Optional NV Pairs
Name Description
RecID RecID of the record to update. If null, a record will be created.

ExternRecID A user-supplied RecID to be used for a new detail record. The RecID and
ExternRecID name/value pairs are mutually exclusive. If the RecID pair is
supplied, this pair will be ignored.

AccountNo AccountNo of linked Contact1 record.

Ref Value of the detail being created or updated.

Notes Notes for the detail record.

SPECIAL NAME/VALUE PAIRS

UField 1–Ufield 8 correspond to the extended detail fields; that is:

UField1 UField5

UField2 UField6

UField3 UField7

UField4 UField8

OUTPUT NAME/VALUE PAIRS

RecID returns the new RecNo if a record was created.

ERROR CODES

WriteDetailError Codes
Name Description
 1 Success

 0 General Failure

-1 It will be a duplicate

-2 Couldn’t create external record

-3 Couldn’t find or lock the record

-4 Couldn’t write to the database

-5 No access to the contact linked to this record

Creating or Updating a Linked Document
WriteLinkedDoc creates or updates a linked document record. If RecID is null, then
a record will be created; otherwise, the record will be updated. When RecID is
passed as null, an AccountNo should be passed; otherwise, an unlinked record will
be created.

Integrating With GoldMine

270

GOLDMINE API VERSION: 5.00.041

REQUIRED NAME/VALUE PAIRS

RecID is the RecID of the record to update. If null, a record will be created.

OPTIONAL NAME/VALUE PAIRS

Optional NV Pairs
Name Description

AccountNo AccountNo of linked Contact1 record.

FileName Full path and filename.

Ref Title of the document.

Notes Notes

SPECIAL NAME/VALUE PAIRS

SyncFile synchronizes the file with remote sites if set to 1.

OUTPUT NAME/VALUE PAIRS

RecID returns the new RecNo if a record was created.

ERROR CODES

These error codes were added in GoldMine API Version: 5.70.20222
WriteLinkedDoc Error Codes

Name Description
 1 Success

 0 General Failure

-1 Contact not found

-2 Access denied

-3 Could not add the linked document

-4 Requested linked document does not exist

-5 Could not write the linked document

-6 The given accountno does not match the existing one

Creating or Updating a Referral
WriteReferral creates or updates a referral from one contact record to another.

GOLDMINE API VERSION: 5.00.041

REQUIRED NAME/VALUE PAIRS

RecID is the RecID of the record to update. If null, a record will be created.

Integrating With GoldMine

 271

OPTIONAL NAME/VALUE PAIRS

WriteReferral Optional NV Pairs
Name Description

FromAccNo AccountNo of the ‘From’ referral.

ToAccNo AccountNo of the ‘To’ referral.

FromRef Reference line for the ‘From’ record.

ToRef Reference line for the ‘To’ record.

Notes Notes

AppendNotes Appends Notes with a time stamp. You must pass a valid RecID.

SPECIAL NAME/VALUE PAIRS

OppSummary is a 12-bit flag of opportunity summary check boxes in the Referrals
properties. This is a sequence of twelve 1s or 0s.

OUTPUT NAME/VALUE PAIRS

RecID returns the new RecNo if a Record was created.

Creating or Updating Activities
WriteSchedule creates or updates a scheduled activity record. If RecID is null, then a
record will be created; otherwise, the record will be updated. When RecID is passed
as null, an AccountNo should be passed; otherwise, an unlinked record will be
created.

GOLDMINE API VERSION: 5.00.041

REQUIRED NAME/VALUE PAIRS

RecID is the RecID of the record to update. If null, a record will be created.

Name Description
AccountNo AccountNo of linked Contact1 record

RecType RecType. For a list of valid RecTypes, see the table structures for CAL.

CaseRecID The Case record ID to link to the calendar event. You cannot attach a case
and an opportunity/project to the same event.

LOPRECID The opportunity or project to attach the event to. It cannot be used with a case
recid.

UserID User name of activity

Contact Contact name

Ref Reference: line

Notes Notes

ActvCode Activity code

OnDate Date of activity (Required for scheduling recurring activities when using
gm6s32.dll – GoldMine 6.0)

Integrating With GoldMine

272

Name Description
OnTime Time of activity (Required for scheduling recurring activities when using

gm6s32.dll – GoldMine 6.0)

Duration Duration of activity

Alarm If set to 1, an alarm will set for the specified user. Default is 0.

AlarmDate Date of alarm. Must set Alarm to 1 to use.

AlarmTime Time of alarm. Must set Alarm to 1 to use.

RSVP If set to 1, the activity will be sent with an RSVP. Default is 0.

Private If set to 1, the activity will be marked as private. Default is 0.

Notify If set to 1, the scheduled user will receive a notification. Default is 0.

Amount Sale amount. Only used when RecType = S

ProbSale Probability of sale. Only used when RecType = S

UnitsSale Number of units in sale. Only used when RecType = S

ccUsers List of additional users to schedule the activity for

bccUsers List of users to inform about the activity througha GoldMine e-mail.

Resources List of resources to reserve for this activity.

RecurType Use only for versions of GoldMine earlier than 6.0. For recurring activities.
Specify one of the following to indicate how the activity should be repeated:
Value Description
1070 Daily
1071 Weekly
1072 Bi-weekly
1073 Monthly
1074 Quarterly
1075 Yearly
1076 Every n days. Also use RecurNDays nv

pair.
1080 First. Also use RecurOnDays nv pair. Ex.

Schedule on the first Monday of every
month.

1081 Second. Also use RecurOnDays nv pair.
1082 Third. Also use RecurOnDays nv pair.
1083 Fourth. Also use RecurOnDays nv pair.
1084 Last. Also use RecurOnDays nv pair.

RecurNDays Use only for versions of GoldMine earlier than 6.0. Recur every x days.
Used when RecurType is set to 1076.

Integrating With GoldMine

 273

Name Description
RecurOnDay Use only for versions of GoldMine earlier than 6.0.

Used when RecurType is set to 1080-1084. For example, you wish the
activity to be schedule for the first Monday of every month, then RecurType
would be set to 1080 and RecurOnDay would be set to 1092.
Value Description
1091 Sunday
1092 Monday
1093 Tuesday
1094 Wednesday
1095 Thursday
1096 Friday
1097 Saturday

RecurSkipWeekend Use only for versions of GoldMine earlier than 6.0.
Set to 1 (default) if the activities should not be scheduled on weekends,
should the scheduling pattern call for it to land on one. Otherwise 0.

RecurFromDate Use only for versions of GoldMine earlier than 6.0.
The date to begin scheduling the activities.

RecurToDate Use only for versions of GoldMine earlier than 6.0.
The date to end the scheduled activities.

GOLDMINE 6.0 NV PAIRS

The following WriteSchedule NV pairs are specific to GoldMine versions 6.0 and
greater. They apply to scheduling recurring activities. The NV pairs for the
previous versions of GoldMine are still valid, though in order to implement
extended recurrence patterns, these new pairs need to be used in lieu of the previous
pairs. If your application will only be used on GoldMine 6.0 systems, it is
recommended to use the newer recurrence NV pairs listed below.
Optional WriteSchedule NV Pairs

Name Description
RecurType For recurring activities. Specify one of the following to indicate how the

activity should be repeated:
Value Description
1 Hourly
2 Daily
3 Weekly
4 Monthly
5 Yearly

RecurFormat Set to 1 (default) to specify an UNTIL recurrence rule (defined by a start
date/time and end date/time) and is used in conjunction with RecurToDate.
Set to 2 to specify a COUNT recurrence rule (defined by a start date/time
and an integer representing the number of occurrences) and is used with
RecurCount.

RecurCount Represents the number of occurrences at which to bound the range (Used
when RecurFormat = 2, omit if RecurFormat = 1).

RecurToDate &
RecurToTime

Use to specify the end of the date and time range for scheduling recurring
activities. (Used when RecurFormat = 1, omit if RecurFormat = 2)

Integrating With GoldMine

274

Name Description
RecurInterval Represents how often the recurrence rule repeats

RecurOnDay The day(s) when the recurrence occurs:
The following seven values can be used when RecurType equals 3
through 5. The values can be combined using the bitwise AND operator.

Value Description
1 Sunday
2 Monday
4 Tuesday
8 Wednesday
16 Thursday
32 Friday
64 Saturday

The following values should only be used when RecurType is equal to
monthly (4) or yearly (5).

Value Description
200 Weekday
201 Weekend Day
202 Day

RecurMonthDay The day of the month the activity should occur. Values 1 through 31 are
valid. Should only be used if RecurType is monthly (4) or yearly (5). If
RecurMonthDay is used, then RecurPos is ignored.

RecurPos Specifies if the activity should be scheduled on the first, second, third,
fourth or fifth day specified in RecurOnDay (as in, first Monday of each
month, etc). Used only when RecurType is monthly (4) or yearly (5). If
RecurMonthDay is set also, this value will be ignored.

RecurMonth Specifies which month the recurring activity is to be scheduled in when the
RecurType is set to monthly (5). Valid values are 1 through 12 and
correspond to months respectively (1 = January).

RecurSkipWeekend Skip weekends when scheduling recurring activities. Valid values or 1
(default) or 0. Use when RecurType is daily (2), monthly (4), or yearly (5).

RecurSkipNon
WorkdayHours

Skip hours that are not designated as part of the workday (ex: 5pm through
8 am). Valid values are 1 (default) or 0. Use when RecurType is set to
hourly (1).

OUTPUT NAME/VALUE PAIRS

RecID returns the new RecID if a record was created.

ERROR CODES

These WriteSchedule error codes were added in GoldMine API Version: 6.0.21021
WriteSchedule Error Codes

Name Description

 1 Success

 0 General Failure

-10 Ondate > RecurEndDate

-11 No Ondate specified

Integrating With GoldMine

 275

Name Description

-12 No RecurToTime (or RecurCount)

-13 No weekdays selected in the weekly pattern

-14 Not enough NV Pairs specified

Creating or Updating a History Record
WriteHistory creates or updates a history record, or completes a scheduled activity
record. If RecID is null, then a record will be created; otherwise, the record will be
updated. When RecID is passed as null, an AccountNo should be passed; otherwise,
an unlinked record will be created. To complete a scheduled activity, you must pass
CalRecID.

GOLDMINE API VERSION: 5.00.041

REQUIRED NAME/VALUE PAIRS

RecID is the RecID of the record to update. If null, a record will be created.

WRITEHISTORY OPTIONAL NAME/VALUE PAIRS

WriteHistory Optional NV Pairs
Name Description
AccountNo AccountNo of linked Contact1 record.

RecType RecType. For a list of valid RecTypes, see the table structures for CONTHIST.

UserID User name of activity

Contact Contact name

Ref Reference line

Notes Notes

ActvCode Activity code

ResultCode Result code

OnDate Date of activity

OnTime Time of activity

Duration Duration of activity

WRITE HISTORY SPECIAL NAME/VALUE PAIRS

WriteHistory Special NV Pairs
Name Description
CalRecID RecID of the scheduled activity (Cal table).

Success If set to 1, the activity was successful. Default is 1.

Private If set to 1, the activity is marked as private.
Default is 0.

RSVP If set to 1, an RSVP is scheduled. Default is 0.

Integrating With GoldMine

276

Name Description
Link If Set to 1 indicates that it is linked to the contact record specified in AccountNo.

Amount Sales amount. Used where RecType = S

ProbSale Probability of sale. Used where RecType = S

UnitsSale Number of units in sale. Used where RecType = S

OUTPUT NAME/VALUE PAIRS

RecID returns the new RecNo if a record was created.

Creating or Updating a Case Record (GoldMine 8.0 or
higher)

WriteCase creates or updates a Case for the GoldMine 8.0 service module.

REQUIRED NAME/VALUE PAIRS

The following fields are required for new records.

Name Description
Accountno Accountno of the contact to link with the Case

Number The case number - required for new - alpha numeric 40 chars

OPTIONAL NAME/VALUE PAIRS

WriteCase Optional NV Pairs
Name Description
Recid A valid Case record ID to modify, passed only on a modify call. Required for

updates.

Accountno Accountno of the contact to link with the Case

Number The case number - required for new - alpha numeric 40 chars

User The goldmine user name to assign the case to. If not passed, assumed to be the
logged in user.

IsTemplate Use this case as a template - 1 = template, 0 = not

IsRead Has been read 1= true, 0 = false

Status A numeric representation of the status. 0 = <unknown>, 1 = assigned, 2 =
reassigned, 3 = escalated, 4 = resolved, 5= abandoned, 6 = open, 7 = closed

Priority A priority code created by the users. Alpha numeric 40 chars

Source The source of the case - alpha numeric 40 chars

Category A category code created by the user - Alpha numeric 40 chars

Type Type code created by the user - alpha numeric 40 chars

Offering A data field mainly used to list what you've offered to the case subject 200 chars

Subject A short description reference 200 chars

Description A long description of the case issues and steps

Integrating With GoldMine

 277

Name Description
Notes Notes on a given resolution - see htmlnotes and appendnodes

ResolutionType A user defined resolution code - alpha numeric 40 chars

ResolutionNotes Notes on the resolution - See htmlnotes and appendnotes

DueDate The date that resolution is due. The format must be date then time in your locale's
format (3-16-07 10:00 am)

ResolvedBy The goldmine user that resolves the issue

ResolvedDate The date of actual resolution. The format must be date then time in your locale's
format (3-16-07 10:00 am)

HTMLNotes Boolean that determines if the notes passed are pre formatted for HTML. 1= true,
0 = false, default is 0

AppendNotes Boolean that determines if notes are overwritten or a new note is appended to the
end. 1= append, 0 = overwrite. Default is 1

ERROR CODES

WriteCase Error Codes
Code Description
1 Success

0 No NV container passed

-1 Required NV pairs not passed

-2 Valid case id not passed

-3 Could not open Cases table

-4 Could not find CaseID

-5 Could not open CaseTeamLink table

-6 Could not initialize new record

-7 Attempt to append new record failed

OUTPUT NAME/VALUE PAIRS

RecID returns the RecID in a name-value container if a new record was created.

Creating or Updating a Case Attachment (GoldMine 8.0
or higher)

WriteCaseAttachment creates or updates a CaseAttachment.

REQUIRED NAME/VALUE PAIRS

The following fields are required for new records: CaseID, RecType, Describes, Title
and Location. See the following table for details.

Integrating With GoldMine

278

OPTIONAL NAME/VALUE PAIRS

WriteCaseAttachment Optional NV Pairs
Name Description
RecID A valid CaseAttachment table recid to modify, passed only on a modify call.

Required for updates.

CaseID A valid Case table recid to attach the file or link to. Required if new.

RecType The recType, an integer of 0 or 1. 0 = File, 1 = Link. Required if new.

Describes An integer of 0 or 1. 0 = Problem, 1 = Solution. Required if new.

Title The title for the file - Alpha numeric 100 chars. Required if new.

Location The URI for the file or link. Alpha-numeric 512 chars. Required if new.

ERROR CODES

WriteCaseAttachment Error Codes
Code Description
1 Success

0 No NV container passed

-1 New with invalid case id

-2 New and missing required values

-3 Could not open Cases table

-4 Could not find CaseID in case table

-5 Couldn't open CaseAttachement table

-6 Could not init new record or find and lock the record to be modified

-7 Invalid rectype passed

-8 Invalid describes value passed

OUTPUT NAME/VALUE PAIRS

RecID returns the RecID in a name-value container if a new record was created.

Adding a GoldMine User as a Case Team Member
(GoldMine 8.0 or higher)

WriteCaseTeamLink adds a GoldMine user as a Team member for a case.

REQUIRED NAME/VALUE PAIRS

WriteCaseTeamLink NV Pairs
Name Description
CaseID A valid Case table recid to add the user. Required for updates.

UserName The GoldMine User Name to add to the Case Team

Role The role for the user. User defined alpha numeric 40 chars.

Integrating With GoldMine

 279

ERROR CODES

WriteCaseTeamLink Error Codes
Code Description
1 Success

0 No NV container passed

-1 New with invalid case id

-2 New and missing required values

-3 Could not open Cases table

-4 Could not find CaseID in case table

-5 Could not open CaseAttachement table

-6 Could not init new record or find and lock the record to be modified

-7 Invalid rectype passed

-8 Invalid describes value passed

OUTPUT NAME/VALUE PAIRS

RecID returns the RecID in a name-value container if a new record was created.

Attaching an Automated Process
AttachTrack attaches an automated process to a contact record.

GOLDMINE API VERSION: 5.00.041

ATTACHTRACK REQUIRED NAME/VALUE PAIRS

Required NV Pairs
Name Description

AccountNo AccountNo of the contact record (Contact1) to which to attach the track.

Track

UserID

OUTPUT NAME/VALUE PAIRS

RecID returns the new RecNo if a record was created.

Executing an SQL Query
SQLStream executes a SQL query and returns the data in a DataStream. For details,
see “Retrieving Data with DataStream” on page 55.

GOLDMINE API VERSION: 5.00.041

REQUIRED NAME/VALUE PAIRS

SQL is the SQL statement to execute.

Integrating With GoldMine

280

OPTIONAL NAME/VALUE PAIRS

SQLStream Optional NV Pairs
Name Description
Filter Xbase filter expression.

FldDlm Field delimiter. Defaults to CR.

RecDlm Record delimiter. Defaults to LF.

StartRec Starting record. Defaults to 1.

GetRecs Maximum records to return. Defaults to 100.

MaxBufSize Maximum buffer size. Defaults to 32k.

Raw (XML
API ONLY)

Indicates the format the data should be returned as. The default (“0”) puts the
data into XML format. Setting Raw to “1” returns the data stream in the old
return packet format, as described below.

OUTPUT NAME/VALUE PAIRS

Output is the return DataStream.

The packet header (the first 12 characters of the Output NV pair) record consists of
two sections:

First byte can be 0, 3, or 4:

0 indicates that more records are available, which could be fetched with another
SQLStream call (be sure to set the StartRec nv pair to one more than the number of
records returned in the first call)

3 indicates the end-of-file (EOF)

4 indicates the beginning-of-file (BOF)

Number following the dash indicates the total number of data records contained in
the packet.

If the Raw parameter is set to 0 using the GoldMine XML API, the packet will be
XML formatted. See the XML Return Packet for information on interpreting this
data format.

Note: If the return DataStream is too large for the specified buffer size, SQLStream
returns a value of -5. When the buffer in increased to an adequate size, SQLStream
will return the data in a DataStream. The practical upper limit for buffer size is 2 MB.
If your query returns data in excess of 2 MB, we recommend using DS_Query and
DS_Fetch rather than SQLStream for better performance

Creating a Contact Group
The CreateContactGroup function is used to create an empty contact group.
Members are then added through the AddContactGrpMembers function. For details,
see “Adding Contacts to a Contact Group” on page 281.

Integrating With GoldMine

 281

GOLDMINE API VERSION: 5.70.20222

REQUIRED NAME/VALUE PAIRS

GroupName is the name of the group to be created.

OPTIONAL NAME/VALUE PAIRS

CreateContactGroupOptional NV Pairs
Name Description
GroupCode Group code.

UserName Group owner. The currently logged in user will be used if empty.

SyncGroup 1 (default) if the group should be synced. Otherwise 0.

OUTPUT NAME/VALUE PAIRS

CreateContactGroup Output NV Pairs
Name Description
GroupNo Group number of the created group. Use this to add members through the

AddContactGrpMembers function.

RETURN CODES

CreateContactGroup Return Codes
Code Description
1 Success

0 General Failure

-1 Missing group name

-2 Could not create the group

Adding Contacts to a Contact Group
Once a contact group is created with CreateContactGroup, the
AddContactGrpMembers function is used to add contacts to that group. In addition,
this function can be used to add members to existing groups.

GOLDMINE API VERSION: 5.70.20222

REQUIRED NAME/VALUE PAIRS

AddContactGrpMembers Optional NV Pairs
Name Description

GroupNo Group number.

Members Multi value NV pair containing multiple NV pair containers. Each container
stores information for each contact to add to the group. See below for details of
the child containers.

Integrating With GoldMine

282

MEMBERS NV PAIR CHILD CONTAINER NAME/VALUE PAIRS

Members NV Pairs
Name Description

Accountno Accountno of the member to add

Reference Reference of the member.

Sort Sort value for the member

MEMBERS NV PAIR CHILD CONTAINER OUTPUT NAME/VALUE PAIRS

Members Output NV Pairs
Name Description

MemberNo Recno/recid of the member record

OUTPUT NAME/VALUE PAIRS (PARENT CONTAINER)

AddContactGrpMembers Output NV Pairs
Name Description
MembersAdded Number of members added.

RETURN CODES

Note that on the first instance the function encounters an error adding a member, it
will stop adding members and not continue through the list of requested members.
AddContactGrpMembers Return Codes

Code Description

 1 Success

 0 General Failure

-1 Missing Group Number

-2 Unable to find group

-3 Cannot add member

-4 No members added

Using AddContactGrpMembers
Below are the steps you should take in order to populate the Members Name/Value
pair correctly.

1. Create parent container using GMW_NV_Create.

2. Populate GroupNo Name/Value pair in parent container.

3. Create another container using GMW_NV_Create to serve as the child
container (assign to a different long variable).

Integrating With GoldMine

 283

4. Populate any common Name/Value pairs in the child container (i.e.
Reference).

5. Loop through the contacts you want to add and do the following:

• Assign Accountno name/value pair in the child container.

• Assign any other optional name/value pairs in the child container (i.e.
reference or sort).

6. Use the GMW_NV_AppendNvValue function to copy the contents of the
child container to a new container within the Members name/value pair of
the parent container:
GMW_NV_AppendNvValue (lParentGMNV, “Members”, lChildGMNV)

7. Execute WriteSchedule.

Reading a Record
ReadRecord reads a record from the specified table, based on RecID. When the
TableName=Contact1, all Contact2 fields will also be returned. Any record that is
inaccessible through GoldMine due to record curtaining will not be returned. Any
fields inaccessible through GoldMine due to field-level access restrictions will not be
returned.

GOLDMINE API VERSION: 5.00.041

REQUIRED NAME/VALUE PAIRS

ReadRecord Required NV Pairs
Name Description
TableName GoldMine table to read.

RecID RecID of the Contact1 record to return.

OPTIONAL NAME/VALUE PAIRS

Address Block returns the address as one block of text instead of in separate fields
for Address1, Address2, City, State, and so on, when equal to 1.

SPECIAL NVS

AccountNo can be used to find the record instead of RecID if TableName=Contact1.

OUTPUT NAME/VALUE PAIRS

All field values for the specified record.
ReadRecord Output NV Pairs

Name Description

Email Returns the primary e-mail address if TableName=Contact1.

Website Website profile will return if TableName=Contact1.

Integrating With GoldMine

284

Name Description

CurtainingState Indicates level of curtaining for returned record. 0 – none, 1 – partial, 2- full. Use
this to save a call to IsContactCurtained.

RETURN CODES

ReadRecord Return Codes
Code Description

1 Success

0 General Failure

-1 No access to the record

-2 Record not found

-3 Invalid parameters

Reading a Contact1 or Contact2 Record
ReadContact reads a contact record from Contact1 and Contact2. Any record that is
inaccessible through GoldMine due to record curtaining will not be returned. Any
fields inaccessible through GoldMine due to field level access restrictions will not be
returned.

GOLDMINE API VERSION: 5.00.041

REQUIRED NAME/VALUE PAIRS

RecID is the RecID of the Contact1 record to return.

OPTIONAL NAME/VALUE PAIRS

AddressBlock returns the address as one block of text instead of in separate fields for
Address1, Address2, City, State, and so on, when equal to 1.

SPECIAL NVS

AccountNo can be used to find the record instead of RecID if TableName=Contact1.

OUTPUT NAME/VALUE PAIRS

All Contact1 and Contact2 field values.
ReadContact Output NV Pairs

Name Description
Email Returns the primary e-mail address if TableName=Contact1.

Website Website profile will return if TableName=Contact1.

CurtainingState Indicates level of curtaining for returned record. 0 = none, 1 = partial, 2 = full. Use
this to save a call to IsContactCurtained.

Integrating With GoldMine

 285

RETURN CODES

ReadContact Return Codes
Code Description

1 Success

0 General Failure

-1 No access to the record

-2 Record not found

-3 Invalid parameters

Returning Alerts Attached to a Contact Record
GetContactAlerts returns all alerts attached to a contact record.

GOLDMINE API VERSION: 5.00.041

REQUIRED NAME/VALUE PAIRS

GetContactAlerts Required NV Pairs
Name Description

RecID RecID of the Contact1 record to return. You can optionally use AccountNo.

AccountNo AccountNo of the Contact1 record. You may optionally use RecID.

OUTPUT NAME/VALUE PAIRS

The function returns the number of contact alerts in the AlertsCount Name/Value.
For each alert, the function returns five fields. Each set of alert fields has the alert
number appended to the field name (represented by X in the following table).
GetContact Alerts Output NV Pairs

Name Description

AlertsCount Number of alerts.

CodeX Three-character alert code.

DescX 80-character description.

NotesX 64k of RTF alert message (optional).

CreatorX User that assigned the alert.

SaveHist Value of 1 indicates that GoldMine will save a history record when the user
acknowledges the alert.

RETURN CODES

GetContactAlerts Return Codes
Code Description
0 No PNV or no alerts found.

Integrating With GoldMine

286

Code Description
>0 The number of alerts returned.

Attaching an Alert
SetContactAlert attaches an alert to the specified contact record. To generate an alert
list, execute the GetAllAlerts function.

GOLDMINE API VERSION: 5.00.041

REQUIRED NAME/VALUE PAIRS

SetContactAlert Required NV Pairs
Name Description

RecID RecID of the Contact1 record to which to attach this alert. You can optionally use
AccountNo.

AccountNo AccountNo of the Contact1 record. You can optionally use RecID.

Code Three-character Alert Code.

Creator Creator of the Alert.

SaveHist A history record is generated each time the Alert is acknowledged if set to 1.

OUTPUT NAME/VALUE PAIRS

None.

The GMW_Execute function will return the following values:
GMW_ExecuteReturn Values for SetContactAlert

Return Description
0 Contact not found

1 Alert is added

2 Alert is already attached

Returning All Alerts
GetAllAlerts returns all alerts defined within GoldMine.

GOLDMINE API VERSION: 5.00.041

REQUIRED NAME/VALUE PAIRS

None.

OUTPUT NAME/VALUE PAIRS

The function returns the number of contact alerts in the AlertsCount name value. For
each alert, the function returns five fields. Each set of alert fields has the alert
number appended to the field name (represented by X below):

Integrating With GoldMine

 287

GetAllAlerts Data Fields Returned
Name Description
AlertsCount Number of alerts.

CodeX Three-character alert code.

DescX 80-character description.

NotesX 64k of RTF alert message (optional).

Returning a User List
GetUsersList returns a list of all GoldMine users.

GOLDMINE API VERSION: 5.00.041

REQUIRED NAME/VALUE PAIRS

None.

OUTPUT NAME/VALUE PAIRS

GetUsersList Required NV Pairs
Name Description

UserList Comma-delimited list of all user names

UserCount Number of users in the list

UserGroupsList Comma-delimited list of user groups

UserGroupsCount Number of user groups

The GMW_Execute function will return the same value as UserCount.

Returning a User Group Member List
GetGroupUsersList returns a list of all members of a GoldMine user group.

GOLDMINE API VERSION: 5.00.041

REQUIRED NAME/VALUE PAIRS

GroupNo is the user group number. See the GetUsersList or GetUserMemberships
functions for information on how to retrieve a UserGroupsList and their numbers.

OUTPUT NAME/VALUE PAIRS

GetGroupUsers List Output NV Pairs
Name Description
UserList Comma-delimited list of all user names

UserCount Number of users in the list

Integrating With GoldMine

288

The GMW_Execute function will return the same value as UserCount.

Returning Group Memberships for a Specified User
GetUserMemberships returns a list of all user group memberships for the specified
UserID.

GOLDMINE API VERSION: 5.00.041

REQUIRED NAME/VALUE PAIR

UserID is the GoldMine user name.

OUTPUT NAME/VALUE PAIRS

GetUserMemberships Output NV Pairs

Name Description
UserGroupsList Comma-delimited list of user group numbers of which the user is a member

UseGroupsCount Number of users in the list

The GMW_Execute function will return the same value as UserGroupsCount.

Saving a User Group
WriteGroupUsersList saves the user members to a user group. You must have
Master Rights to execute this function.

GOLDMINE API VERSION: 5.00.041

REQUIRED NAME/VALUE PAIRS

WriteGroup UsersList Required NV Pairs
Name Description

GroupNo User group number. For details on retrieving a UserGroupList name and number,
see the GetUsersList or GetUserMemberships functions.

UserList Comma-separated list of users who are members of the specified group.

OUTPUT NAME/VALUE PAIR

UserCount is the number of updated user records.

The GMW_Execute function will return the same value as UserCount.

Retrieving the Names of User Groups
GetGroupName returns the descriptive names given for a comma-delimited list of
group numbers.

Integrating With GoldMine

 289

GOLDMINE API VERSION: 5.50.10111

REQUIRED NAME/VALUE PAIRS

GetGroupNameRequired NV Pairs
Name Description
GroupList Comma-delimited list of group number for which to retrieve names (for example:

1,4,5,8)

RETURN NAME/VALUE PAIRS

GetGroupNameReturn NV Pairs
Name Description

GroupCount Number of groups actually found

Each Group
Number

The corresponding name for the group number specified as the value

EXAMPLE

GroupCount = 4
1 = MyGroup
2 = Techs
3 = Sales
4 = Management

Evaluating an Xbase Expression on a Contact Record
XbaseContactExpr parses a contact- related Xbase expression and return the result
and type of the expression. It is possible to parse multiple expressions in one call.

GOLDMINE API VERSION: 5.50.10111

NAME/VALUE PAIRS

XbaseContactExprNV Pairs
Name Description

AccountNo Account number of the contact to parse against

XbaseExpr Expression to parse, or

ExprCount Number of expressions to parse, and

XBaseExpr1 ..
XBaseExprN

Expressions to parse

Integrating With GoldMine

290

RETURNED NAME/VALUE PAIRS

XbaseContactExpr Returned NV Pairs
Name Description
Result Result of parsing the expression

Type Type of the expression. Possible values:
0 – Error
1 – Number
2 – String
3 – Date
5 – Bool, or

Result1 . . ResultN Result of each expression

Type1 .. TypeN Type of each expression—see type above for possible values

RETURN VALUES

The XbaseContactExpr function returns the following status values:
XbaseContractExpr return values

Value Description
-2 Contact was not found

-1 No accountno given

0 No expression

1..N Number of correctly parsed expressions

Encrypting Text
The EncryptString function encrypts a plain text string to a Base64 ASCII encoded
buffer.

GOLDMINE API VERSION: 5.50.10111

REQUIRED NAME/VALUE PAIRS

EncryptString Required NV Pairs
Name Description

Key Key to use. This can be any value.

ClearText Text to encrypt.

HashKey Set to “1” to specify the key to be hashed before use. Provides better security if the
key is very simple.

RETURNED NAME/VALUE PAIRS

EncryptStringReturned NV Pairs
Name Description
CryptText Encrypted string in an ASCII encoded buffer (Base 64).

Integrating With GoldMine

 291

Decrypting Encoded Text
The DecryptString function decrypts encoded text.

GOLDMINE API VERSION: 5.50.10111

REQUIRED NAME/VALUE PAIRS

DecryptStringRequired NV Pairs
Name Description
Key Key to use. Must be the same as when encrypting.

CryptText Text to decrypt.

HashKey Set to “1” to specify the key to be hashed before use. Provides better security if the
key is very simple.

RETURNED NAME/VALUE PAIRS

DecryptString Returned NV Pairs
Name Description
ClearText Decrypted string. The text is padded with spaces to be on a 64-bit (8 bytes)

boundary.

Retrieving the Default Contact Automated Process
Within GoldMine, a user can specify a particular Automated Process (AP) to be
attached to new contact records. The GetNewContactAP function returns the RecID
of the Automated Process that is assigned to automatically attach to new records.
The NV Pair in which the Automated Process RecID is returned is called
NewContactAP. The function returns 1 on success, and 0 on failure.

Integrating With GoldMine

292

Deleting Calendar Items
The DeleteSchedule function is used to delete scheduled activities.

GOLDMINE API VERSION: 5.50.10111

REQUIRED NAME/VALUE PAIR

DeleteSchedule Required NV Pair
Name Description
RecID RecID of the scheduled item to delete (Cal record RecID)

RETURN VALUES

Value Description

0 OK

-1 Empty or bad RecID value

-2 Can’t open database

-3 Cal record not found

-4 Failed to delete

-9999 General exception (unknown error)

Deleting History Items
The DeleteHistory function is used to delete completed activities.

GOLDMINE API VERSION: 5.50.10111

REQUIRED NAME/VALUE PAIRS

DeleteHistory Required NV Pairs
Name Description
RecID RecID of the history item to delete (ContHist record ID)

RETURN VALUES

Value Description
0 OK

-1 Empty or bad RecID value

-2 Can’t open database

-3 ContHist record not found

-4 Failed to delete

-9999 General exception (unknown error)

Integrating With GoldMine

 293

Handling GoldMine Security
An important part of your integration considerations should be how you will handle
the security of your GoldMine database. All business logic functions that write and
read from the GoldMine database adhere to the security settings for the user logged
in through GMW_LoadAPI or GMW_LoadBDE. Additional functions are provided
to aid in managing GoldMine security.

Creating a New GoldMine Login
WriteGMUser enables you to create GoldMine user names. The user logged into the
API must have master rights.

GOLDMINE API VERSION: 5.50.10111

NAME/VALUE PAIRS

WriteGMUser NV Pairs
Name Description
UserName Username to add

Password Password for the user

FullName Full name of the user

SQLUser SQL login to be used for this user if connecting to an MS SQL database

SQLPassword Password for the SQL login

MasterUser Set to “1” to enable master rights for this user, otherwise “0”

RETURN VALUES

WriteGMUser returns “1” on success and “0” on failure.

Reading a GoldMine Login
The ReadGMUser function returns detailed information about a GoldMine Login.

GOLDMINE API VERSION: 6.00.21021

OUTPUT NAME/VALUE PAIRS

ReadGMUserNV Pairs
Name Description
UserName Username to add.

Password Password for the user

FullName Full name of the user

SQLUser SQL login to be used for this user if connecting to an MS SQL database

SQLPassword Password for the SQL login

MasterUser “1” if this is a master rights user, otherwise “0”

Integrating With GoldMine

294

RETURN VALUES

ReadGMUser returns “1” on success and “0” on failure.

Retrieving Security Access
GetUserAccess returns the security information specified for the currently logged-in
user.

GOLDMINE API VERSION: 5.50.10111

GetUserAccess Return Name/Value Pairs
Name Description
SQLUser SQL Username specified for this user

Master Whether or not the user has master rights: 1 master, 0 not

AccessRights This name/value pair consists of a set of flags indicating the access rights
the user has to various areas of GoldMine. Each permission is either
granted or denied based on the value of its position in the set of flags. A
value of “1” signifies the permission is granted, and “0” if it is denied. Below
is a chart of the positions in the set of flags and their corresponding
permission:

Position Permission
2 Others Calendar
3 Others History
4 Others Forecasts
5 Others Reports
6 Others Forms
7 Others Filters
8 Others Groups
9 Others Linked Documents
12 Create new contact records
13 Edit Fields
14 Delete contact records
15 Assign contact record owners
16 Edit tab folders
17 Schedule automated processes
19 Issue SQL Queries
20 Netupdate
21 Output To menu
25 Build groups
35 Real time tab
36 Toolbar settings

UsersCALENDAR The user group’s calendar that this user has permission to view. Valid if
permission is set. See AccessRights name/value pair.

UsersHISTORY The user group’s history that this user has permission to view. Valid if
permission is set. See AccessRights name/value pair.

UsersLINKS The user group’s linked documents that this user has permission to view.
Valid if permission is set. See AccessRights name/value pair.

UsersGROUPS The user group’s contact groups that this user has permission to view. Valid
if permission is set. See AccessRights name/value pair.

Integrating With GoldMine

 295

Name Description
UsersREPORTS The user group’s reports that this user has permission to view. Valid if

permission is set. See AccessRights name/value pair.

UsersFILTERS The user group’s filters that this user has permission to view. Valid if
permission is set. See AccessRights name/value pair.

UsersFORMS The user group’s forms that this user has permission to view. Valid if
permission is set. See AccessRights name/value pair.

UsersSALES The user group’s sales that this user has permission to view. Valid if
permission is set. See AccessRights name/value pair.

ForceLogoutAt The time (AM/PM) that this user will be forced to exit GM.

IdleLogout The amount of time (in minutes) that GM will remain idle before shutting
down.

MenuExclusion A string containing the menu ID's that are excluded from the user's instance
of GM, delimited by an underscore. Ex. "344_531_164_"

NewRecOwnership A Boolean value that states whether or not new users are automatically
assigned to this user.

Retrieving Field-Level Access Rights
FieldAccessRights returns a list of all fields and the access right for the logged-in
user for each.

GOLDMINE API VERSION: 5.50.10111

REQUIRED NAME/VALUE PAIRS

FieldAccessRightsOutput NV Pairs
Name Description
TotalFieldCount Number of fields returned

Field Names
(for example, COMPANY, CONTACT, KEY1)

Possible values:
N - No Access
R - Read Access
W - Read/Write Access

EXAMPLE NV CONTAINER RETURNED FROM FIELDACCESSRIGHTS
TotalFieldCount = 3
COMPANY = R
CONTACT = W
ACCOUNTNO = N

Retrieving Visible Fields
NonCurtainedFields returns a \n delimited list of fields visible on partially
curtained records. The list is returned in the NonCurtainedList and
SemiPartNonCurtainedList name/value pairs. The latter pair indicates which fields
are visible when the contact record is semi-partially curtained (all four top quadrants
of the contact record are visible) and is only returned in GoldMine 6.0 and greater.

Integrating With GoldMine

296

Note: You must pass an empty NV container with all calls that do not take any parameters.

Checking for Record Curtaining
IsContactCurtained tests a contact record for curtaining.

REQUIRED NAME/VALUE PAIRS

IsContactCurtained Required NVPairs
Name Description

RecID Record ID of the Contact1 record to test. AccountNo can be passed in place of this
Name/Value pair.

AccountNo AccountNo of the Contact1 record to test. RecID can be passed in place of this
Name/Value pair.

OUTPUT NAME/VALUE PAIR

Curtain NV pair return values
Value Description
0 Not curtained

1 Partial curtaining

2 Fully curtained

The GMW_Execute function will return TRUE if the record was found.

Generating a Remote License File
CreateRemoteLicense generates a license file for a remote user or site. The resulting
license.dbf (6.7 or lower) or license.bin (7.0 or higher) file will be stored in a
subdirectory off a specified path. If the path specified is C:\temp, then the file will be
in C:\temp\user where “user” is the GoldMine username provided to the function.

GOLDMINE API VERSION: 5.50.10111

NAME/VALUE PAIRS

CreateRemoteLicense Required NV Pairs
Name Description
UserName User or site name

LicPath Location to place the license files. If left empty, the file will be put in a directory called
UserLic under the sysdir (GoldMine directory)

LicType U (undocked) or S (site)

SiteUsers For a sublicense site, the number of users at that site

RETURN NAME/VALUE PAIRS

CreateRemoteLicense returns one NV pair called “Result” with the following return
codes. This code is also returned as the function’s result value.

Integrating With GoldMine

 297

CreateRemoteLicense Return Result Codes
Value Description

1 OK

0 General Error

-1 No Username

-2 User already undocked

-3 Cannot open user file

-4 User not found

-5 Undocked license count exceeded

-8 Cannot create the new license file

Removing a Remote License
RemoveRemoteLicense removes an undocked user or sub-license site.

GOLDMINE API VERSION: 5.50.10111

NAME/VALUE PAIRS

RemoveRemoteLicense NV Pairs
Name Description
UserName User Name or Site Name

LicType U (undocked) or S (sublicense site)

RETURN NAME/VALUE PAIRS

RemoveRemoteLicense returns one NV pair called “Result” is returned with the
following return codes. This code is also returned as the function’s result value.
RemoveRemoteLicense Return Result Codes

Value Description
1 Success

0 General Error

E-mail Name/Value Functions
This set of functions allows the manipulation of GoldMine and Internet e-mail.

Reading a Mail Message
The ReadMail function reads an e-mail message based on either the RecID in the
Mailbox table or the Cal/ContHist tables. A flag is required to specify whether the
function should look in the Cal tables or ContHist tables. The mail message can be
opened for editing or reading.

Integrating With GoldMine

298

GOLDMINE API VERSION: 5.50.10111

REQUIRED NAME/VALUE PAIRS

None.

OPTIONAL NAME/VALUE PAIRS

ReadMail Optional NV Pairs
Name Description
MboxRecID Mailbox RecID. Either this NV pair or the RecID NV pair must be included.

RecID Cal/History RecID.

History Flag identifying location of RecID provided. 1 for History, 0 or nothing for Cal.

ForEdit 1 to open for editing, 0 or nothing if for reading.

Password Password to decrypt the message if it was encrypted on send.

READMAIL OUTPUT NAME/VALUE PAIRS

Output NV Pairs
Name Description
RecID Cal/History RecID

MboxRecID Mailbox RecID

MailboxFlags Collection of flags:
MAILBOX_ITEM_READ 0x0001
MAILBOX_ITEM_HIST 0x0002
MAILBOX_ITEM_OUTBOUND 0x0004
MAILBOX_ITEM_ATTACH 0x0008
MAILBOX_ITEM_REDIRECT 0x0010
MAILBOX_ITEM_GMASLINKS 0x0020

To List of all the To: recipients. Comma-delimited and quoted if needed.

Cc List of all the CC: recipients. Comma-delimited and quoted if needed.

Bcc List of all the Bcc recipients. Comma-delimited and quoted if needed.

ReplyTo Reply to address (if any)

From The from address of the message. Will usually be the default user account, but
can contain other addresses.

Subject Subject

Org Organization that will appear in the header.

MessageID MessageID from the header.

Status Message status from the header.

Date Internet standard date from the header.

XMailer XMailer from the header.

OtherHeaders Other headers not categorized above.

Body Message body. This will be different in edit mode.

Attachments A question mark delimited list of attachments.

Integrating With GoldMine

 299

Name Description
Alarm 1 if set, 0 if not.

History 1 if from History, 0 if not.

Private 1 if private, 0 if not.

RSVP 1 if marked for RSVP, 0 if not.

ReturnReceipt 1 if requested, 0 if not.

Encrypted 1 if the message is encrypted, 0 if not.

Outgoing Message is an outgoing message (queued for delivery or already sent): 1 or 0.

MailType Following types are possible:
SMM_Internet 0 This is the one to handle
SMM_GoldMine 1 Only exists for compatibility with GoldMine 4.0
SMM_Template 2 Template mails.

IsMIME 1 if MIME based message, 0 if not.

AccountNo Accountno of the linked contact (or empty).

LinkedContact If an additional contact is linked this will have the ContSupp RecID.

LinkedOppty RecID of the linked opportunity or project (if applicable).

Activity Activity Code

Result Result Code

CalDate Calendar/History date

CalTime Calendar/History time

Contact Contact name

CreateBy User who created the mail or “Internet” if the message was retrieved from the
mail server.

Folder Folder in which the message is stored.

SubFolder Subfolder in which the message is stored. No value will be returned if the
message(s) already exist in the Inbox or Outbox.

RecType RecType of the Calendar record:
In Cal: Q = Queued mail, M = Incoming
In History: MI = Incoming, MO = Outgoing

Reference Calendar/History reference. Usually initialized from the subject automatically.

User User who owns the message belongs.

HasTransferSet 1 if the e-mail message has a transfer set attached to it, 0 if not.

HasVCard 1 if the e-mail message has a Vcard attached to it, 0 if not.

HasWebImport 1 if the e-mail message has a WebImport attached, 0 if not.

Integrating With GoldMine

300

RETURN CODES

ReadMailReturn Result Codes
Value Description
1 Success

0 Failure

-1 Message is private

-2 Message not found, or cannot be loaded

-3 Exception

Queuing a Message for Delivery
The QueueMail function queues a message for delivery. The actual delivery is not
handled through the DLL. It is recommended to set up a specific user in GoldMine
responsible for sending multiple users’ mail on a regular basis.

If the message to be queued already exists within GoldMine, pass either the Mailbox
RecID or the Calendar/History RecID with the history flag. When queuing a new
message, do not provide values for the RecID name/value pairs or the flag.

GOLDMINE API VERSION: 5.50.10111

QueueMail Optional NV Pairs
Name Description
MboxRecID The mailbox RecID. Either this NV pair or the RecID NV pair must be

included.

RecID The Cal/History RecID.

History Flag identifying location of RecID provided. 1 for History, 0 or nothing
for Cal.

To A list of To: addresses delimited by commas and double-quoted as
needed

Cc A list of CC addresses delimited by commas and double-quoted as
needed

Bcc List of Bcc addresses delimited by commas and double-quoted as
needed

ReplyTo Reply-to address

OtherHeaders Special headers, if needed

Organization Organization field

From From address

Subject Subject of the message.

BodyText Body text

TextRTF Set to non-zero if the text should be in RTF format

NumAttachments Number of attachments to send

Integrating With GoldMine

 301

Name Description
Attachment0..AttachmentN Indexed list of attachments. The first attachment NV pair will be

Attachment0, then Attachment2, and so on.

MailboxFlags See ReadMail

AccountNo Accountno of the contact to which the message is linked

OpptyRecID RecID of an opportunity or project to which the message should be
linked

LinkedContact RecID of the contsupp record of an additional contact, if so linked

ActivityCode Activity code

CalDate Calendar date – the date to actually send the message

CalTime Calendar time – the time to actually send the message

Reference Reference in the calendar record

Result Result code

User User name

Private 1 to mark as Private, 0 if not

RSVP 1 to request a RSVP, 0 if not

Alarm 1 set alarm, 0 if not

ReturnReceipt Request a return receipt. The value portion of the pair should be the
return address to which to send the receipt.

SaveAsDraft Set to 1 if the message should be saved as a draft and not queued.

UseMIME Set to 1 to force the message to be a MIME message even if no
attachments are available, otherwise 0.

AttachVCard Set to 1 to attach the user Vcard to the message, otherwise 0

SendNow Set to “1” to send the message immediately without queuing it. Pertains
to a GoldMine user only (no Internet recipients).

Password Specify a password to set this message to be encrypted. See also the
EncryptUSMode name/value pair.

EncryptUSMode Set to “1” and specify a password to use the US encryption mode. This
will be forced to “0” if the license does not allow it.

RETURN NAME/VALUE PAIRS

QueueMail Return NV Pairs
Name Description
RecID Calendar/History RecID

MboxRecID Mailbox RecID

MailBoxFlags Mailbox flags (see above for description)

Integrating With GoldMine

302

Updating a Mail Message
The UpdateMail function allows the modifying of the opportunity with which the
mail is associated and indicates whether the message has been read, its encryption
state, and whether or not it is private.

GOLDMINE API VERSION: 5.50.10111

REQUIRED NAME/VALUE PAIRS

UpdateMail Required NV Pairs
Name Description
MboxRecID Mailbox RecID. Either this NV pair or the RecID NV Pair must be included

RecID Cal/History RecID

History Flag identifying the location of RecID provided. 1 for History, 0 or nothing for Cal.

OPTIONAL NAME/VALUE PAIRS

UpdateMail Optional NV Pairs
Name Description
OpptyRecID Opportunity with which the message is associated.

Private Set to 1 to mark the message as private, otherwise 0.

MarkRead Set to 1 to mark the message as having been read, 0 for unread.

Password Password to decrypt the message.

EncryptUSMode Set to 1 for 128-bit encryption, 0 for 32-bit encryption.

Saving a Mail Message into GoldMine
The SaveMail function enables you to save a mail message into GoldMine when the
actual sending or retrieval of the message took place in an outside application. The
folder/subfolder specified to save the message to will be created by GoldMine if
needed. There’s no need to create it beforehand.

GOLDMINE API VERSION: 5.50.10111

The NV Pairs coincide with the QueueMail function. SaveMail also has the following
additional NV pairs:

OPTIONAL NAME/VALUE PAIRS

SaveMail Optional NV Pairs
Name Description
OutgoingMail Set to 1 if mail was sent by the user. Don’t include, or set to 0, if it was received

mail

Folder The name of the folder in which to put the mail. If nothing is given, it will be put in
the Inbox or Outbox according to the OutgoingMail NV pair

Integrating With GoldMine

 303

Name Description
SubFolder The name of the subfolder in which to put the mail. Folder must also be defined.

To put it in a sub-inbox, set Folder to “X-GM-INBOX”

RETURN CODES

The SaveMail function returns the following values:
SaveMail Return Codes

Value Description
 0 Cannot initialize

-1 Cannot queue the message

-2 Can’t save the message (for incoming e-mail)

-3 Can’t complete the message to the requested folder

-4 An existing message was loaded. SaveMail works only with new messages.

Deleting a Message
The DeleteMail function deletes a message according to the settings specified for the
user within GoldMine (use trashcan or not, delete attachments or not). A message
can be deleted based on either the Mailbox RecID or the Calendar/History RecID
with a flag to tell the function if it should look in the Calendar or History table.

GOLDMINE API VERSION: 5.50.10111

REQUIRED NAME/VALUE PAIRS

DeleteMailRequired NV Pairs
Name Description
MboxRecID Mailbox RecID for the record to be deleted, or

RecID Calendar/History RecID

History 1 if the RecID in the RecID NV pair is from the History table, or 0 if from the
Calendar table

Filing a Message in History
The FileMail function files a mail message in history specified by the Mailbox table
RecID.

GOLDMINE API VERSION: 5.50.10111

REQUIRED NAME/VALUE PAIRS

FileMail Required NV Pairs
Name Description
MboxRecID Mailbox RecID for the record to be deleted

Integrating With GoldMine

304

OPTIONAL NAME/VALUE PAIRS

FileMail Optional NV Pairs
Name Description
Folder Folder to file into

Subfolder Subfolder to file into

Result Result to be marked in history

ToUser Used to specify another username if filed on behalf of that user

RETURN CODES

FileMail Return Codes
Value Description
 1 Success

 0 General Failure

-1 Cannot initialize Internet-related structs

-2 Message doesn’t exist or can’t be loaded

-3 Cannot complete the message or the message is already filed

Preparing the NV Container for a New Mail Message
A number of options and templates are available to GoldMine users for sending
e-mail within the GoldMine program. For new messages being sent through the API, all
of these can be accessed by utilizing the PrepareNewMail function. This function will
return a container containing the same NV pairs returned by the ReadMail function
reflecting the appropriate settings within GoldMine. You may then modify the container
accordingly and send the message with QueueMail.

GOLDMINE API VERSION: 5.50.10111

REQUIRED NAME/VALUE PAIRS

None.

OPTIONAL NAME/VALUE PAIRS

PrepareNewMailOptional NV Pairs
Name Description
LinkToAccount AccountNo of the contact to link the new message to.

LinkToAddContact RecID of the additional contact record to link to. LinkToAccount must also be
specified.

ManualTo Specific e-mail address to send to.

MailType Pass a 1 to indicate creation of an internal GoldMine mail message.

RETURN NAME/VALUE PAIRS

Same as ReadMail

Integrating With GoldMine

 305

Preparing the NV Container to Reply to a Mail Message
A number of options and templates are available to GoldMine users for sending e-
mail within the GoldMine program. All of these can be accessed for replying to
messages sent through the API by utilizing the PrepareReplyMail function. In
addition, the body text of the message may be returned containing quoted text from
the message being replied to. This function will return a container containing the
same NV pairs returned by the ReadMail function reflecting the appropriate settings
within GoldMine. You may then modify the container accordingly and send the
message with QueueMail.

GOLDMINE API VERSION: 5.50.10111

REQUIRED NAME/VALUE PAIRS

PrepareReplyMail Required NV Pairs
Name Description
FromRecID RecID from Cal or ContHist of the message replied to

FromHist 1 if the message is in History (contHist), otherwise assumed to be in Cal

QuoteText Text to quote in the reply. If this NV pair is left empty, the full message text
will be quoted. If so, set in the user’s mail preferences.

ReplyToAll Reply to all recipients of the original message, not just the sender

ToEMail Set to 0 if replying to a non-mail activity

OPTIONAL NAME/VALUE PAIRS

PrepareReplyMailOptional NV Pairs
Name Description
LinkToAccount AccountNo of the contact to whom to link the new message.

LinkToAddContact RecID of the additional contact record to link to LinkToAccount must also be
specified.

RETURN NAME/VALUE PAIRS

Same as ReadMail—see page 297.

Preparing an NV Container to Forward a Mail Message
A number of options and templates are available to GoldMine users for sending e-
mail within the GoldMine program. For forwarded messages being sent through the
API, all of these can be accessed by using the PrepareFwdMail function. In addition,
PrepareFwdMail includes the original message body text and header information to
be forwarded. This function will return a container containing the same NV pairs
returned by the ReadMail function reflecting the appropriate settings within
GoldMine. You may then modify the container accordingly and send the message
with QueueMail.

Integrating With GoldMine

306

GOLDMINE API VERSION: 5.50.10111

REQUIRED NAME/VALUE PAIRS

PrepareFwdMail Required NV Pairs
Name Description
FromRecID RecID from Cal or Conthist of the message replied to

FromHist 1 if the message is in History (conthist), otherwise assumed to be in Cal

Redirect Pass a 1 to create a redirected mail instead of forwarded.

ForwardTo
GMUser

Set to 1 to forward the mail to a GoldMine user instead of another contact record.

FwdToUser If ForwardToGMUser is set, then set to the desired GoldMine username to forward the
message to.

OPTIONAL NAME/VALUE PAIRS

PrepareFwdMail Optional NV Pairs
Name Description
LinkToAccount Accountno of the contact to link the new message to.

LinkToAddContact RecID of the additional contact record to link to. LinkToAccount must also be
specified.

RETURN NAME/VALUE PAIRS

Same as ReadMail—see page 297.

Adding an E-mail Center Folder
Use AddFolder to create a folder and/or subfolder in the E-mail Center. If both the
folder and the subfolder do not exist, then both will be created.

GOLDMINE API VERSION: 5.50.10111

NAME/VALUE PAIRS

AddFolder NV Pairs
Name Description
Folder Folder name to be created—Required

SubFolder Optional subfolder name

User Optional user name. Defaults to the logged-in user

Integrating With GoldMine

 307

Deleting an E-Mail Center Folder
Use DeleteFolder to remove folders or subfolders from the E-Mail Center. If both a
folder and subfolder are supplied, only the subfolder will be deleted. Any messages
included in the specified folder are also deleted.

GOLDMINE API VERSION: 5.50.10111

NAME/VALUE PAIRS

DeleteFolder NV Pairs
Name Description
Folder Folder name—Required

Subfolder Optional subfolder name.

Obtaining a List of E-Mail Center Folders
The FolderList function returns a sorted list of folders from the E-Mail Center. Folders
are returned with a prefix of “0” if the folder is a top-level folder, or a prefix of “1” if
it is a subfolder. System folders are not returned, only user folders.

GOLDMINE API VERSION: 5.50.10111

RETURN NAME/VALUE PAIRS

FolderList Return NV Pairs
Name Description
FolderCount Number of folders in the list

Folder1..FolderN List of folders

EXAMPLE LIST OF FOLDERS
FolderCount = 6
Folder1 = 0Filed
Folder2 = 1January 2000
Folder3 = 2February 2000
Folder4 = 0Sent
Folder5 = 1January 2000
Folder6 = 2February 2000

FromList
The FromList function returns a list of unique From addresses to use in outgoing e-
mail.

Integrating With GoldMine

308

GOLDMINE API VERSION: 5.50.10111

RETURN NAME/VALUE PAIRS

FromList Return NV Pairs
Name Description
FromCount Number of From addresses returned

From0..FromN List of addresses, indexed from 0 to FromCount-1

History Flag identifying the location of RecID provided. 1 for History, 0 or nothing for Cal

Accessing E-mail Templates
The TemplateList function returns a list of e-mail templates for a specified user.

GOLDMINE API VERSION: 5.50.10111

OPTIONAL NAME/VALUE PAIRS

TemplateList Optional NV Pairs
Name Description
User Username for whom to get the list of templates. Default is the currently logged-in

user

IncludePublic Set to “1” to include public templates

RETURN NAME/VALUE PAIRS

TemplateList Return NV Pairs
Name Description
TemplateCount Number of templates in the list.

Name1..NameN Names of the templates, indexed from 0 to TemplateCount-1.

RecID1..RecIDN RecIDs of the templates, indexed from 0 to TemplateCount-1.

Retrieving E-mail Account Information
The GetAccountsList function returns a set of name/value pairs describing all
e-mail accounts defined for the currently logged-in user. Because a user may have
multiple e-mail accounts defined, the name/value pairs are indexed to identify the
account that corresponds to the setting. The index number is appended to the
beginning of each name. The indexes begin with zero (0).

GOLDMINE API VERSION: 5.50.10111

RETURN NAME/VALUE PAIRS

GetAccountsList Return NV Pairs
Name Description
AccountsCount Number of accounts

Integrating With GoldMine

 309

Name Description
DefaultAccountID Default account number

Indexed Name/Value Pairs:

AccountID ID needed by the other e-mail account-related functions (for example,
OnlineList)

DisplayName Name of the e-mail account displayed in the E-mail Center. If available,
the account name is used, and if the user requests that
mailto:user@server will always be shown, then they’re appended to the
account name.

User User to whom the profile is assigned (same as the logged-in user)

AccountName User-defined descriptive name given to the e-mail account

POP3Server Address of the POP3 server

Username Username for the POP3 server

Password Password for the POP3 account

OwnUser User who owns the account. This is used so one user can retrieve e-mail
for another user. The result is that e-mail messages retrieved by JOHN but
with OwnUser set to MARY, will appear in MARY’s e-mail center, not
in JOHN’s.

POPAuthMode POP server’s authentication mode. Possible values:
0 – PASS
1 – APOP
2 – RPA
3 – NTLM

DeleteMail Set to “1” to auto-delete mail from this account, otherwise “0”

AutoRetrieve Set to “1” to auto-retrieve messages from this account, otherwise “0”

UseSigFile Set to “1” to use a signature file with this account, otherwise, “0”

SigFile Path and filename to the signature file if UseSigFile is set

POPPort POP3 Server’s port number

TOPSupport Set to 1 if the account supports the TOP command

ShowInIMC Set to “1” to show this account in the Internet Mail Center

SMTPServer SMTP Server address

ReturnAddress Return e-mail address for this account

SMTPPort Port number for the SMTP server

SMTPUser Username for the SMTP server, if the server requires authentication.

SMTPPass Password for the SMTP server, if the server requires authentication

SMTPAUTH Set to “1” if the SMTP server requires authentication

SMTPAUTHMode Possible Values:
0 – None
1 – Login
2 - NTLM

mailto:user@server

Integrating With GoldMine

310

Retrieving a List of Messages Waiting Online
The OnlineList function returns a list of all messages waiting online for the requested
account. Each message’s corresponding NV pairs are indexed from 1 to N according
to the number of available messages. The index numbers are appended to the end of
the NV pair name.

GOLDMINE API VERSION: 5.50.10111

REQUIRED NAME/VALUE PAIRS

OnlineList Required NV Pairs
Name Description
AccountID AccountID to retrieve. Get this value from GetAccountsList.

RETURN NAME/VALUE PAIRS

OnlineList Returned NV Pairs
Name Description
Error Will include an error message if an error occurred and there is a message

to present (like server error messages).

NumMessages The number of messages available online.

Indexed Name/Value Pairs:
Message_Subject Subject of the message.

Message_DispDate Date as displayed in the GoldMine E-mail Center.

Message_Date Date in the message.

Message_Time Time the message was sent.

Message_Address Address that sent the message.

Message_Size Size in bytes.

Message_DispSize Size as displayed in GM.

Message_Type Possible Values:
0 – Plain
1 – Plain MIME (no attachments)
2 – Complex MIME
3 – GM Sync set

Message_AccNo Accountno to which this message is linked.

Message_UID Server UID of this message.

Message_Num Message number on the server—use for retrieval/delete.

Message_Mailer Mailer that generated the message.

Message_ReplyTo Reply-to address for this message.

Message_To Address to which the message is sent.

Message_CC CC (copy) addresses for the message.

Message_Bcc Bcc (blind copy) addresses for the message.

Integrating With GoldMine

 311

Name Description
Message_GMUsersTo Comma-delimited list of GoldMine users to whom the message is being

sent.

Message_GMUsersCc List of GoldMine users to whom the message is being copied.

Message_Org E-mail organization field.

Message_OtherHeaders Other headers associated with this message.

Message_Read 1 if the message has already been read, otherwise 0.

Message_Headers Formatted headers as they appear in the preview window.

Message_Body Message body (according to the number of lines previewed in the E-mail
Center).

RETURN VALUES

OnlineList Return Values
Value Description
1 Success

0 General Failure

-1 Invalid Account ID

-2 Protocol Error—see the description in error

-3 Comm error—see the description in error

-4 Timeout or other error—see the description in error

-5 Unknown error

Retrieving Messages
The RetrieveMessages function retrieves specified messages that are online. The
returned name/value pairs will have a message number appended to the end of the
name.

GOLDMINE API VERSION: 5.50.10111

REQUIRED NAME/VALUE PAIRS

RetrieveMessage Required NV Pairs
Name Description
AccountID Account ID to use.

AllMessages Set to “1” for all messages to be retrieved.

MessageList Tab (\t) delimited list of message numbers (taken from OnlineList) to retrieve.

RETURN NAME/VALUE PAIRS

RetrieveMessage Return NV Pairs
Name Description
Message_CalRec Cal RecID of the message, ***** if an error occurred

Integrating With GoldMine

312

Name Description
Message_MboxRec Mailbox RecID of the message, ***** if an error occurred.

RETURN VALUES

RetrieveMessages Return Values
Value Description
1 Success

0 General Failure

-1 Invalid Account ID

-2 Protocol Error—see the error description in error

-3 Comm error—see the error description in error

-4 Timeout or other error—see the error description in error

-5 Unknown error

Deleting Online E-mail Messages
The DeleteMessages function allows deletions of messages waiting online.

GOLDMINE API VERSION: 5.50.10111

REQUIRED NAME/VALUE PAIRS

DeleteMessages Required NV Pairs
Name Description
AccountID Account ID to use.

AllMessages Set to “1” for all messages to be deleted.

MessageList Tab (\t) delimited list of message numbers (taken from OnlineList) to delete.

Return Name/Value Pairs
The returned name/value pair will have each message number appended to the end
of the name.

GOLDMINE API VERSION: 5.50.10111

DeleteMessages Return NV Pairs
Name Description
Message_Deleted “1” if the message was deleted successfully.

RETURN VALUES

DeleteMessages Return Values
Value Description
1 Success

Integrating With GoldMine

 313

Value Description
0 General Failure

-1 Invalid Account ID

-2 Protocol Error—see the error description in error

-3 Comm error—see the error description in error

-4 Timeout or other error—see the error description in error

-5 Unknown error

Saving a Manual List of Recipients
The SaveManualRcptList function will receive a list of manually provided recipients
and save them to an .ini file. The name/value pair list will be Recipient1.RecipientN
with the values being the addresses you wish to add to the list. Any missing entry
will be saved as an empty address.

GOLDMINE API VERSION: 5.50.10111

Retrieving a Manual List of Recipients
The GetManualRcptList function returns a list of the saved manual recipient list. The
return value will be “1” for success and “0” for failure. The container will have a
name/value pair NumberOfRecipients with the number of recipients. Finally, it will
contain Recipient0..RecipientN with the actual addresses.

GOLDMINE API VERSION: 5.50.10111

Managing Internet E-mail Preferences
GetEmailPrefs and SetEmailPrefs allow you to get and set the Internet preferences
for the user. The preferences correspond with the Internet Preferences dialog box
within GoldMine. The functions work the same, except the former receives
information from GoldMine and the latter updates the data in GoldMine.

GOLDMINE API VERSION: 5.50.10111

Important Note: Before calling SetEmailPrefs, the values of the e-mail preferences in
the NV pair container must be preloaded with GetEmailPrefs. Otherwise, all e-mail
preferences not included in the container for SetEmailPrefs will be deleted from
GoldMine.

OPTIONAL INPUT (SETEMAILPREFS) AND OUTPUT (GETEMAILPREFS) NAME/VALUE PAIRS

GetEmailPrefs and SetEmailPrefs Name/Value Pairs
Name Description
UserName (GoldMine
6.0 or greater ONLY)

The GoldMine user whose e-mail preferences you wish to retrieve or set

Integrating With GoldMine

314

Name Description
MultiActive 1 – Show all accounts in the mail center

0 – Show only the default account

PreviewLines Number of lines to preview in the E-Mail Center prior to downloading the
message

QuoteAll 1 to quote entire message by default when replying, otherwise 0

NewQuoteStyle 1 to specify a custom quote string identifier, otherwise 0

QuoteString Quote string identifier to be used if NewQuoteStyle is set. Ex: >>

Organization User-specified signature .txt file

UseOrg 1 to include the signature specified in Organization

SaveHistDefault 1 – Save filed mail in history by default
0 – Do not

AttachDir Folder in which to save attachments.

OnlyGMMail 1 – When auto retrieving, retrieve only mail from other GoldMine clients.
0 – Auto retrieve mail from all clients

SkipLarge If automatic retrieval is set, set to 1 to skip large e-mail message larger
than size specified in MaxEmailSize, otherwise 0

MaxEmailSize Limit on size of messages to be automatically retrieved if SkipLarge is set
to 1

SkipNoAddress 1 indicates to not skip addresses not on file, otherwise 0

WarnAboutRTF 1 – warn user before sending HTML mail
0 – Do not

GetUnreadMail If automatic retrieval is set, set to 1 to retrieve only unread mail, otherwise
0

UseHeaderDate 1 to use the date in the mail header, otherwise 0

CompleteOnReply 1 to complete the original message being replied to, otherwise 0

UUEncodeScan 1 to scan mail for UUEncoded Data, otherwise 0

VcardAction 100 if incoming Vcards are not to be saved

Use8BitEncoding 1 to use 8 bit encoding, otherwise 0

AutoSpell 1 to automatically spell check messages before sending, otherwise 0

ForceWrapAt When forcing line wrap, wrap at this specified column number

WrapReplyAt Wrap quoted lines in reply at this specified column number

LoadPublicTemplates 1 to show public e-mail templates, otherwise 0

ReadOnGet 1 to Open ‘Read E-mail’ dialog on retrieval, otherwise 0

LinkOnGet 1 – Prompt user if incoming e-mail address is not on file
0 – Do not

SkipOnDispose 1 – Go to next message in reader after disposing of (deleting/filing) the
current one
0 – Close the reader

Integrating With GoldMine

 315

Name Description
ShowHeaders Settings for the mail center preview window headers display:

0 – no headers
1 – summary of headers only
2 – full headers display

UseTrashCan 1 to use trash can for deleted mail, otherwise 0.

EmptyTrashOnExit 1 to empty trash when closing E-Mail Center, otherwise 0.

ConfirmEmptyTrash 1 to confirm before deleting from trash can, otherwise 0.

ShowFullAccountName 1 to show both the e-mail address and the account name (if available) for
online accounts, otherwise 0.

DiscardWebImportMess
ages

1 to discard Web import message after the data has been imported,
otherwise 0.

AutoWebImport 1 to import data when retrieving E-Mail Center mail, otherwise 0 (setting
this to 0 does NOT assume BackgroundWebImp).

BackgroundWebImp 1 to import data on background e-mail retrieval, otherwise 0 (setting this
to 0 does NOT assume AutoWebImport).

SyncContact Sticky setting from the E-mail Center to move the current contact record
to the one the selected message belongs to. Set to 1 to activate, 0
otherwise.

KeepOldTransfers 1 to keep the transfer set attachments after retrieving them, otherwise 0.

AllowDeleteAll 1 to enable ‘Delete All Server Mail’, otherwise 0.

SendVCard 1 to use user-supplied V-card, otherwise 0.

DefaultLinkAddr When linking an incoming e-mail in GoldMine, if the
e-mail does not exist within GoldMine, a dialog box appears to the user.
There is a checkbox indicating whether to keep the setting of how the
unlinked message is handled. To keep the setting, set this NV pair to 1,
otherwise 0.

SyncAttachmentDefault 1 to mark attachments for syncing by default, otherwise 0.

ShowOutlookInIMC 1 to show the Outlook folder in the E-Mail Center, otherwise 0.

LinkAttachToCont 1 to save attachments as linked documents, otherwise 0.

MarkIncomingAsPrivate 1 to mark incoming messages as private, otherwise 0.

DelAttachWithMsg 1 to delete attachments when deleting the mail, otherwise 0.

KeepUserVCard Every time GoldMine is restarted and a message is sent, GoldMine
creates a VCard for the sending user so that a correct VCard for the user
can be sent with the mail if so requested. The VCard is created from
information GoldMine has for the logged-in user. Sometimes a user may
want to manually edit the VCard to add or change information not
available to GoldMine. In this case, the user can ask GoldMine to not
recreate the VCard from scratch and GoldMine will use the existing
VCard that the user modified. Set to 1 to have GoldMine not create a
new VCard, otherwise 0.

BccToSelf 1 to always send a Bcc to the user, otherwise 0.

UseShortDate 1 to use the short date format, 0 to use the long format.

GMAttachAsLinks 1 to send attachments as links to GoldMine users, otherwise 0.

Integrating With GoldMine

316

Name Description
POPIdleDisconnect Number of minutes to wait without activity only in the E-mail Center

before automatically disconnecting. The default is 10 minutes.

SkipOverWriteUI 1 to suppress file overwrite prompt, otherwise 0.

RetrieveOverwrite Default action to be taken when an e-mail attachment file already exists.
Possible values:
4 – auto name assignment
5 – do not save the file
6 – overwrite existing file
7 – new file name

DefaultOUTFolder Folder name under which to put sent mail (replace the default sent
folder).

DefaultINFolder Folder name under which to put filed mail instead of the default Filed
folder.

MonthlyFolderNames List of folder names to replace the standard month names used in
GoldMine by default. Each month must be * separated and the last entry
must be ???*

NewFilingMode
(GoldMine 6.0 and
greater ONLY)

1 to indicate to use two-level filing mode

ActiveAutoGetMail 1 to activate automatic mail retrieval, otherwise 0.

GetInterval Frequency in minutes to check for mail automatically, if
ActiveAutoGetMail is set.

SendQueueWhen
AutoGet

1 to send queued messages when ActiveAutoGetmail is set, otherwise 0.

GetOldToNew 1 to download old messages first, otherwise 0.

UseHTMLByDefault 1 to use HTML when creating new e-mail, otherwise 0.

ExtractEmbedded
HTML

1 to extract embedded HTML as attachment, otherwise 0.

TCPTimeout Number of seconds until a communication timeout.

SendQueueFor A semicolon-delimited list of GoldMine user names for which this account
should send queued e-mail.

FakeSMTPDomain Used to present the system as a user-defined name if the name returned
by the system is not acceptable by the SMTP server.

DefaultTemplate Specify the default template name for new outgoing messages.

DefaultReplyTemplate Specify the default template name for new reply messages.

DefaultFwdTemplate Specify the default template name for new forwarded messages.

Quarantine-to Name of the quarantine directory to which the quarantine rules move
files.

In addition, each e-mail account set up for the user is supplied or returned through a
special multi-value item named Profiles. The Profiles NV pair contains a set of
containers; each holds information for a different e-mail account. You can determine
the number of accounts by calling the GMW_NV_GetMultiValueCount function.

Integrating With GoldMine

 317

To retrieve the HGMNV pointers for the child containers, call GMW-NV-
GetMultiNvValue for each account to retrieve.

If you are setting e-mail preferences, you will want to set the NV values for an
e-mail account by using either:

• GMW_NV_AppendNvValue, to copy a prepared container to the Profiles
NV pair or

• GMW_NV_AppendEmptyNvValue, to create an empty child container
within the Profiles NV Pair for which you can later set the values.

See “Working with Multi-Value Name/Value Pairs” on page 106 for more
information on these functions.

Profiles child containers have the following NV Pairs.
Profiles Child Container NV Pairs

Name Description
POP3_Account The user-editable descriptive name for the account

POP3_Server The server name or address

POP3_User The server user name

POP3_Pass The password for the account

Return_Address The return address

SMTP_Server The SMTP server name or address

SigFile The path to the signature file to use

OwnUser The user to which this account belongs. This is used so one user can retrieve e-
mail for another user. The result is that e-mails retrieved by JOHN but with
OwnUser set to MARY will appear in MARY’s e-mail center, not in JOHN’s.

DelServerMail Set to 1 to delete the messages from the server upon retrieval, otherwise 0

AutoGetMail Set to 1 to automatically retrieve mail for this account.

UseSigFile Set to 1 to use the specified signature file

ShowInIMC Set to 1 to show this account in the E-mail Center.

UseTOPCmd Set to 1 if this server supports the TOP command, otherwise 0

POP3_Port The POP3 server’s port number

SMTP_Port The SMTP server’s port number

POP3_AuthMode The POP server’s authentication mode. Possible values:
0 – PASS
1 – APOP
2 – RPA

SMTP_AuthMode Possible values:
0 – None
1 – Login
2 – NTLM

SMTP_User The username for the SMTP server, if the server requires authentication

SMTP_Pass The password for the SMTP server, if the server requires authentication

Integrating With GoldMine

318

Validating a Web User Name and Password
ContactLogin validates a WebUserName/WebPassword assigned to a contact.

GOLDMINE API VERSION: 5.50.10111

REQUIRED NAME/VALUE PAIRS

ContactLogin Required NV Pairs
Name Description
UserName Contact’s Web user name.

Password Contact’s Web password.

SPECIAL NAME/VALUE PAIRS

ContactLogin Special NV Pairs
Name Description
NewUserName Changes the existing Web username. Must be used with NewPassword, and a

valid UserName. Password must also be passed for verification.

NewPassword Changes the existing Web password. Must be used with NewUserName, and a
valid UserName/Password must be passed for verification.

OUTPUT NAME/VALUE PAIRS

ContactLogin Output NV Pairs
Name Description
AccountNo Returns the AccountNo of the contact record

RecID Returns the RecID for the contact record

NOTES

This function is useful when writing an extranet solution for GoldMine. To enable
GUI access to these features, set ContWebAccess=1 under the [GoldMine] section of
your username.ini. You can then select Edit|Record Properties|WebAccess to set the
Web user/pass (maximum of 15 characters each). GoldMine stores Web access data
in ContSupp with a RecType of W. Each user name and password must be unique.
This information does not synchronize.

Manipulating User-Defined Fields and Views
Beginning in GoldMine 6.00.21021, the ability to read and write changes to the user-
defined fields and views was added to the GoldMine API. Most of the following
functions use multi-container NV pairs. This means that a single NV pair may
contain multiple containers, each with their own set of NV pairs. For example, when
reading field views, there will be an NV pair named “View”. This NV pair will
contain an entire NV pair container for each field view in GoldMine containing a set
of NV pairs that describe that view. In addition, each of those containers will store

Integrating With GoldMine

 319

an NV pair named “Field”. This NV pair will contain an entire NV pair container for
each field defined on that view, each with its own set of NV pairs describing that
field. For information on how to read and manipulate multi-container NV pairs,
please see Working with Multi-Value Name/Value Pairs on page 93.

Important Note: The GoldMine user logged into the API must have master rights in
order to use these functions.

Reading All Field Views
The GetContactViews function returns all of the field views, including the custom
screens, main contact record, and the summary tab fields. As described above, this
function utilizes multi-container NV pairs. Execute GetContactViews, passing an
empty NV pair container, to retrieve the following NV pairs describing the field
views.

GOLDMINE API VERSION: 6.00.21021

OUTPUT NAME/VALUE PAIRS

GetContactViews Output NV Pairs
Name Description
NumViews The number of views, including the Main and Summary views.

SelectedViewID The view currently selected for the Field tab of the contact record.

View A multi-value list containing a container for each of the actual views. See the table
below for details of the NV containers this value stores.

VIEW NAME/VALUE PAIRS

The View NV Pair in the container returned by GetContactViews contains NV Pair
containers with the following NV Pairs describing the field views defined in
GoldMine.
View NV Pair Output Container

Name Description
ID The view ID

Name The view name

TabName The tab name, if this view has one

UserAccess The user that is allowed to access this view.

CurrContactset If set to 1, then the view is visible in the current contact set, otherwise the value is
0

FieldCount The number of fields this view has.

Field A multi-value list containing a container for each of the actual fields on the view.
See the table below for details of the NV containers this value stores.

Integrating With GoldMine

320

FIELD NAME/VALUE PAIRS

The Field NV Pair in the View container contains NV Pair containers with the
following NV Pairs describing the fields displayed on the view defined in GoldMine.
Field NV Pair Output Container

Name Description
VerticalCenter Y coordinate of the colon on the view

HorizontalCenter X coordinate of the colon on the view

LabelSize The length allowed for the label

EditWidth The width of the editable space for the field on the view

IndexNumber This is the index associated with this field and is used to decide if the field is
searchable (as in the Key fields).

FieldLen The physical length of the field in the database.

HotKey Reserved for future use.

TabOrder The tab order position for the field (the order in which the field will be selected
when pressing the tab key)

ExprField If 1, indicates an expression field, otherwise 0

PhoneFaxField If 1, indicates if the field is a phone or fax field.

ExtendedProperties If 1, this field has extended properties

LogInHistory If 1, any changes made to this field will be logged as a history record on the
contact

ReadAccess Indicates the user or group that can read the contents of the field

WriteAccess Indicates the user or group that can modify the contents of the field

FieldName The physical field name

FieldExpr The field expression if ExprField = 1

GlobalLabel The global label for the field

LocalLabel The local label for the field

RecNo Unique identifier for the field on the view. Needed to modify or delete the field
from the view.

LabelExpr Expression to evaluate to generate the field label

LabelColorExpr Contains the number representing the color of the label

FieldColorExpr Contains the number representing the color of the field.

LabelReference Text value to refer to an expression label (in the list of fields for the view, for
example)

GETCONTACTVIEWS RETURN VALUES

GetContactViews Return Values
Value Description
1 Success

0 General Failure

-1 Not a master rights user

Integrating With GoldMine

 321

Value Description
-2 Field views cannot be loaded

Deleting a Contact View
The DeleteContactView function deletes the view specified by the view ID. This
function accepts one input NV pair, ViewID. Retrieve the ViewID with the
GetContactViews function.

GOLDMINE API VERSION: 6.00.21021

DELETECONTACTVIEWS RETURN VALUES

DeleteContactViews Return Values
Value Description
1 Success

0 General Failure

-1 Not a master rights user

-2 Field view cannot be found

-3 The Main and Summary view cannot be deleted

-4 Failed to delete

Creating or Modifying a Contact View
The WriteContactView function enables adding and modifying contact views. In
addition, fields displayed on the contact views are added, modified or deleted
through this function. This function does not modify the data structure, only the
display properties of the fields included in the view.

The input NV container for this function has an NV pair named Field. This is a
multi-value NV pair that stores multiple NV pair containers, each describing a field
to add, update, or delete on the view. Multiple field operations can be performed in
one call to WriteContactView. For example, an existing field could be updated, new
fields can be added to the view, and fields can be deleted; each operation has its own
Field child container.

GOLDMINE API VERSION: 6.00.21021

INPUT NAME/VALUE PAIRS

WriteContactView Input NV Pairs
Name Description
ID The view ID if updating an existing view. Retrieve this from GetContactViews.

Omit if creating a new view.

Name The view name

TabName The tab name, if this view has one

Integrating With GoldMine

322

Name Description
UserAccess The user that is allowed to access this view.

CurrContactset If set to 1, then the view is visible in the current contact set, otherwise the value is
0

Field A multi-value list containing a container for each of the field operations to perform
(adding, deleting, modifying). See the table below for details of the NV containers
to include.

FIELD NAME/VALUE PAIRS

The Field NV Pair in the parent container contains NV Pair containers with the
following NV Pairs describing the fields to add, edit or delete from the view.
Field NV Pair Input Container

Name Description
Action NEW, UPDATE, or DELETE

RecNo Unique identifier for the field on the view. Omit if adding a new field to the
view. If updating or deleting, retrieve this value by calling GetContactViews.

VerticalCenter Y coordinate of the colon on the view

HorizontalCenter X coordinate of the colon on the view

LabelSize The length allowed for the label

EditWidth The width of the editable space for the field on the view

HotKey Reserved for future use.

TabOrder The tab order position for the field (the order in which the field will be selected
when pressing the tab key)

ExprField If 1, indicates an expression field, otherwise 0

LogInHistory If 1, any changes made to this field will be logged as a history record on the
contact

ReadAccess Indicates the user or group that can read the contents of the field

WriteAccess Indicates the user or group that can modify the contents of the field.

FieldName The physical field name

FieldExpr The field expression if ExprField = 1

GlobalLabel The global label for the field

LocalLabel The local label for the field

LabelExpr Expression to evaluate to generate the field label

LabelColorExpr Contains the number representing the color of the label

FieldColorExpr Contains the number representing the color of the field.

LabelReference Text value to refer to an expression label (in the list of fields for the view, for
example)

WRITECONTACTVIEW OUTPUT NV PAIRS

One NV pair is returned, FieldErrors, indicating the number of field-related errors
reported. The function continues adding fields even if some fail. For each field the

Integrating With GoldMine

 323

API could not add, an entry is added to the field’s child container in an NV pair
called Error. The possible values for this pair are:
Field Error Codes

Value Description
-1 Invalid Action

-2 Requested field not found

-3 No Record ID given for updating or deleting a field

-4 Field cannot be deleted

-5 Field cannot be written

-6 For a new view, only new fields are possible (Action cannot equal MODIFY or DELETE if
creating a new view).

-7 Reserved

-8 Reserved

-9 Reserved

-10 -> -20 Invalid positioning

WRITECONTACTVIEW RETURN VALUES

WriteContactView Return Values
Value Description
1 Success

0 General Failure

-1 Not a master rights user

-2 Field view cannot be loaded

-3 Field view could not be saved

Reading Custom Fields
The ReadCustomFields function returns information about the physical properties of
custom fields defined in GoldMine. This function contains a multi-value NV Pair,
called Field, which stores multiple name/value containers, each with specific details
about each field. For information on manipulating and reading multi-value NV
pairs, see Working with Multi-Value Name/Value Pairs on page 93.

GOLDMINE API VERSION: 6.00.21021

READCUSTOMFIELDS INPUT NV PAIRS

ReadCustomFields Input NV Pairs
Name Description
NumFields The number of fields returned.

Field A multi-value NV containing containers for each field returned. See the table below for
details on the NV pairs included.

Integrating With GoldMine

324

FIELD NV PAIR CONTAINER

The Field NV pair in the parent container returned by ReadCustomFields contains
an NV pair container for each custom field defined in GoldMine. The fields are
described by the following NV pairs:
Field NV Pairs

Name Description
Description A text description of the field

Name The physical field name

Type The data type stored in the field. Possible values are C (char), D (date), and N
(numeric)

Length The physical length of the field

Decimals The number of decimal places, if numeric

READCUSTOMFIELDS RETURN VALUES

ReadCustomFields Return Values
Value Description
1 Success

0 General Failure

-1 Not a master rights user

-2 Cannot open ContUDef

Modifying the Structure of Custom Fields
The EditCustomField function adds, deletes, or updates a custom field.

Important Note: The API will not rebuild the GoldMine database to reflect the
physical changes you may specify with this function. This must be initiated with the
GoldMine application.

GOLDMINE API VERSION: 6.00.21021

EDITCUSTOMFIELD INPUT NV PAIRS

EditCustomField Input NV Pairs
Name Description
Action NEW, DELETE, or UPDATE

Description A meaningful description of the field

Name The field name of an existing field to update or delete. Specify a new unique field
name if creating a new field.

Type The data type of the field: C (char), D (date), or N (numeric)

NewName The new name to assign to this field if updating an existing one

Length The physical length to make the field

Decimals The number of decimals for a numeric field

Integrating With GoldMine

 325

EDITCUSTOMFIELD RETURN VALUES

EditCustomField Return Values
Value Description
1 Success

0 General Failure

-1 Not a master rights user

-2 Cannot open ContUDef

-3 Invalid action

-4 Invalid field name

-5 Name is not unique

-6 Field not found

-7 Field not allowed to be deleted

-8 Invalid field type

-9 Missing field parameters

-10 Failure deleting field

-11 Cannot write record

Reading Calendar Preferences
ReadCalendarPrefs reads a passed user's calendar preferences. If user not passed,
assumed to be the session's logged in user. User must be master rights in order to
read other's prefs..

READCALENDARPREFS INPUT NV PAIRS

ReadCalendarPrefs Input NV Pairs
Name Description
UserName The GoldMine user name to read the prefs of

READCALENDARPREFS OUTPUT NV PAIRS

ReadCalendarPrefs Output NV Pairs
Name Description
UserName The GoldMine user name to read the prefs of

UserList The list of Users that appear on the user's calendar

PegboardUserList List of users on the user's pegboard

ShowAction Show actions on the calendar

ShowAppt Show appointments on the calendar

ShowCall Show calls on the calendar

ShowEvent The number of decimals for a numeric field

ShowLitReq Show literature requests on the cal

Integrating With GoldMine

326

Name Description
ShowMsg Show msgs on the cal

ShowOccasion Show occasions on the cal

ShowOpTask Show opportunity tasks on the cal

ShowOther Show other events on the cal

ShowProjTask Show project tasks on the cal

ShowPubEvent Show public events on the cal

ShowSales Show sales on the cal

ShowToDo Show to do's on the cal

ShowHistAction Show history actions on the cal

ShowHistCall Show call actions

ShowHistEvent Show event actions

ShowHistLitReq Show lit req actions

ShowHistMsg Show msg actions

ShowHistOpTask Show op task actions

ShowHistOther Show other actions

ShowHistProjTask Show proj task actions

ShowHistPubEvent Show pub event actions

ShowHistSales Show sales actions

ShowHistToDo Show todo actions

DefaultView The default view of the calendar
 0 - day
 1 - week
 2 - month
 3 - year
 4 - planner
 5 - outline
 6 - pegboard

AutoForwardCalls Automatically forward calls

AutoForwardMsgs Automatically forward messages

AutoForwardActions Automatically forward actions

AutoForwardAppts Automatically forward appointments

AutoForwardSales Automatically forward sales

AutoForwardOther Automatically forward other

SyncRecord Sync the record

ShowTotals Show totals

ShowIcons Show icons

RefreshRate In seconds

PegRefreshRate Pegboard refresh rate in secs

Integrating With GoldMine

 327

Name Description
Color The windows color value for the cal color

TimeIncrement In minutes

FontSize Calendar font size

ShowWeekends Show weekends

FirstDayofWeek 0 = Sunday 7 = sat

nWeekends Bit mathed for days to consider the weekend

DayBegin Military time for the day beginning. 09:00

DayEnd Day end in military time - 17:00 for 5pm

CalShowActvCode Show activity code on cal

HistShowActvCode Show hist activity code

PublishICal Publish iCal file?

PublishICalPath The path to where to publish ical - must be in URI format (must
start with file:, http:, or ftp:)

PublishICalUser If path is ftp or http, the login user name

PublishICalPwd If path is ftp or http, the login user pwd

PublishICalUsersList The users to publish

PublishIcalAction Publish actions

PublishIcalAppt Publish appointments

PublishIcalCall Publish calls

PublishIcalEvent Publish events

PublishIcalLitReq Publish literature requests

PublishIcalMsg Publish msgs

PublishIcalOccasion Publish occasions

PublishIcalOpTask Publish opportunity tasks

PublishIcalOther Publish other events

PublishIcalProjTask Publish project tasks

PublishIcalPubEvent Publish public events

PublishIcalSales Publish sales

PublishIcalToDo Publish to do's

PublishIcalHistAction Publish history actions

PublishIcalHistCall Publish call

PublishIcalHistEvent Publish event

PublishIcalHistLitReq Publish literature request

PublishIcalHistMsg Publish message

PublishIcalHistOpTask Publish op task

PublishIcalHistOther Publish other

Integrating With GoldMine

328

Name Description
PublishIcalHistProjTask Publish project task

PublishIcalHistPubEvent publish public event

PublishIcalHistSales Publish sales

PublishIcalHistToDo Publish todo

Publish2ICSFilterByDate Dates to publish

Publish2ICSStartDate The start date of the range

Publish2ICSEndDate The end date of the range

PublishICSFilterActivCode The activity code to filter on

PublishICSFilterRef The reference code to filter on

PublishICSFilterByLink Filter on the link? true or false

PublishHTML Publish cal to HTML?

PublishHTMLPath The path to where to publish the HTML - must be in URI format
(must start with file:, http:, or ftp:)

PublishHTMLUser If path is ftp or http, the login user name

PublishHTMLPwd If path is ftp or http, the login user pwd

PublishHTMLUsersList The users to publish

PublishHTMLAction Publish actions

PublishHTMLAppt Publish appointments

PublishHTMLCall Publish calls

PublishHTMLEvent Publish events

PublishHTMLLitReq Publish literature requests

PublishHTMLMsg Publish msgs

PublishHTMLOccasion Publish occasions

PublishHTMLOpTask Publish opportunity tasks

PublishHTMLOther Publish other events

PublishHTMLProjTask Publish project tasks

PublishHTMLPubEvent Publish public events

PublishHTMLSales Publish sales

PublishHTMLToDo Publish to do's

PublishHTMLHistAction Publish history actions

PublishHTMLHistCall Publish call

PublishHTMLHistEvent Publish event

PublishHTMLHistLitReq Publish literature request

PublishHTMLHistMsg Publish message

PublishHTMLHistOpTask Publish op task

PublishHTMLHistOther Publish other

Integrating With GoldMine

 329

Name Description
PublishHTMLHistProjTask Publish project task

PublishHTMLHistPubEvent Publish public event

PublishHTMLHistSales Publish sales

PublishHTMLHistToDo Publish todo

Publish2HTMFilterByDate Dates to publish
0 - today
 1 - yesterday
 2 - tomorrow
 3 - this week
 4 - last week
 5 - next week
 6 this month
 7 last month
 8 next month
 9 - this year
 10 - next year
 11 - date range

Publish2HTMStartDate the start date of the range

Publish2HTMEndDate the end date of the range

PublishHTMFilterActivCode the activity code to filter on

PublishHTMFilterRef the reference code to filter on

PublishHTMFilterByLink Filter on the link? true or false

PublishFB publish free busy time if PublishFB is TRUE

PublishFBPath the path to where to publish free busy - must be in URI format
(must start with file:, http:, or ftp:)

PublishFBUser if path is ftp or http, the login user name

PublishFBPwd if path is ftp or http, the login user pwd

PublishFBAction Publish actions

PublishFBAppt Publish appointments

PublishFBCall Publish calls

PublishFBEvent Publish events

PublishFBLitReq Publish literature requests

PublishFBMsg Publish msgs

PublishFBOccasion Publish occasions

PublishFBOpTask Publish opportunity tasks

PublishFBOther Publish other events

PublishFBProjTask Publish project tasks

PublishFBPubEvent Publish public events

PublishFBSales Publish sales

PublishFBToDo Publish to do's

Integrating With GoldMine

330

Name Description
PublishFBHistAction Publish history actions

PublishFBHistCall Publish call

PublishFBHistEvent Publish event

PublishFBHistLitReq Publish literature request

PublishFBHistMsg Publish message

PublishFBHistOpTask Publish op task

PublishFBHistOther Publish other

PublishFBHistProjTask Publish project task

PublishFBHistPubEvent Publish public event

PublishFBHistSales Publish sales

PublishFBHistToDo Publish todo

PublishFBFilterByDate Dates to publish
0 - today
 1 - yesterday
 2 - tomorrow
 3 - this week
 4 - last week
 5 - next week
 6 this month
 7 last month
 8 next month
 9 - this year
 10 - next year
 11 - date range

PublishFBStartDate The start date of the range

PublishFBEndDate The end date of the range

PublishFBFreq Frequency in minutes

READCALENDARPREFS RETURN VALUES

ReadCalendarPrefs Return Values
Value Description
1 Success

0 No container passed

-1 Not a master rights user or invalid user name

-2 User ini file doesn't exist

-3 Cannot open the cal table

Modifying Calendar Preferences
WriteCalendarPrefs writes a passed user's calendar preferences. The user must have
master rights in order to write another user's preferences.

Integrating With GoldMine

 331

WRITECALENDARPREFS INPUT NV PAIRS

WriteCalendarPrefs Input NV Pairs
Name Description
UserName The GoldMine user name to read the prefs of

WRITECALENDARPREFS OUTPUT NV PAIRS

WriteCalendarPrefs Output NV Pairs
Name Description
UserName The GoldMine user name to read the prefs of

UserList The list of Users that appear on the user's calendar

PegboardUserList List of users on the user's pegboard

ShowAction Show actions on the calendar

ShowAppt Show appointments on the calendar

ShowCall Show calls on the calendar

ShowEvent The number of decimals for a numeric field

ShowLitReq Show literature requests on the cal

ShowMsg Show msgs on the cal

ShowOccasion Show occasions on the cal

ShowOpTask Show opportunity tasks on the cal

ShowOther Show other events on the cal

ShowProjTask Show project tasks on the cal

ShowPubEvent Show public events on the cal

ShowSales Show sales on the cal

ShowToDo Show to do's on the cal

ShowHistAction Show history actions on the cal

ShowHistCall Show call actions

ShowHistEvent Show event actions

ShowHistLitReq Show lit req actions

ShowHistMsg Show msg actions

ShowHistOpTask Show op task actions

ShowHistOther Show other actions

ShowHistProjTask Show proj task actions

ShowHistPubEvent Show pub event actions

ShowHistSales Show sales actions

ShowHistToDo Show todo actions

DefaultView The default view of the calendar

AutoForwardCalls Automatically forward calls

AutoForwardMsgs Automatically forward messages

Integrating With GoldMine

332

Name Description
AutoForwardActions Automatically forward actions

AutoForwardAppts Automatically forward appointments

AutoForwardSales Automatically forward sales

AutoForwardOther Automatically forward other

SyncRecord Sync the record

ShowTotals Show totals

ShowIcons Show icons

RefreshRate In seconds

PegRefreshRate Pegboard refresh rate in secs

Color The windows color value for the cal color

TimeIncrement In minutes

FontSize Calendar font size

ShowWeekends Show weekends

FirstDayofWeek 0 = Sunday 7 = sat

nWeekends Bit mathed for days to consider the weekend

DayBegin Military time for the day beginning. 09:00

DayEnd Day end in military time - 17:00 for 5pm

CalShowActvCode Show activity code on cal

HistShowActvCode Show hist activity code

PublishICal Publish iCal file?

PublishICalPath The path to where to publish ical - must be in URI format (must
start with file:, http:, or ftp:)

PublishICalUser If path is ftp or http, the login user name

PublishICalPwd If path is ftp or http, the login user pwd

PublishICalUsersList The users to publish

PublishIcalAction Publish actions

PublishIcalAppt Publish appointments

PublishIcalCall Publish calls

PublishIcalEvent Publish events

PublishIcalLitReq Publish literature requests

PublishIcalMsg Publish msgs

PublishIcalOccasion Publish occasions

PublishIcalOpTask Publish opportunity tasks

PublishIcalOther Publish other events

PublishIcalProjTask Publish project tasks

PublishIcalPubEvent Publish public events

Integrating With GoldMine

 333

Name Description
PublishIcalSales Publish sales

PublishIcalToDo Publish to do's

PublishIcalHistAction Publish history actions

PublishIcalHistCall Publish call

PublishIcalHistEvent Publish event

PublishIcalHistLitReq Publish literature request

PublishIcalHistMsg Publish message

PublishIcalHistOpTask Publish op task

PublishIcalHistOther Publish other

PublishIcalHistProjTask Publish project task

PublishIcalHistPubEvent Publish public event

PublishIcalHistSales Publish sales

PublishIcalHistToDo Publish todo

Publish2ICSFilterByDate Dates to publish

Publish2ICSStartDate The start date of the range

Publish2ICSEndDate The end date of the range

PublishICSFilterActivCode The activity code to filter on

PublishICSFilterRef The reference code to filter on

PublishICSFilterByLink Filter on the link? true or false

PublishHTML Publish cal to HTML?

PublishHTMLPath The path to where to publish the HTML - must be in URI format
(must start with file:, http:, or ftp:)

PublishHTMLUser If path is ftp or http, the login user name

PublishHTMLPwd If path is ftp or http, the login user pwd

PublishHTMLUsersList The users to publish

PublishHTMLAction Publish actions

PublishHTMLAppt Publish appointments

PublishHTMLCall Publish calls

PublishHTMLEvent Publish events

PublishHTMLLitReq Publish literature requests

PublishHTMLMsg Publish msgs

PublishHTMLOccasion Publish occasions

PublishHTMLOpTask Publish opportunity tasks

PublishHTMLOther Publish other events

PublishHTMLProjTask Publish project tasks

PublishHTMLPubEvent Publish public events

Integrating With GoldMine

334

Name Description
PublishHTMLSales Publish sales

PublishHTMLToDo Publish to do's

PublishHTMLHistAction Publish history actions

PublishHTMLHistCall Publish call

PublishHTMLHistEvent Publish event

PublishHTMLHistLitReq Publish literature request

PublishHTMLHistMsg Publish message

PublishHTMLHistOpTask Publish op task

PublishHTMLHistOther Publish other

PublishHTMLHistProjTask Publish project task

PublishHTMLHistPubEvent Publish public event

PublishHTMLHistSales Publish sales

PublishHTMLHistToDo Publish todo

Publish2HTMFilterByDate Dates to publish
0 - today
 1 - yesterday
 2 - tomorrow
 3 - this week
 4 - last week
 5 - next week
 6 this month
 7 last month
 8 next month
 9 - this year
 10 - next year
 11 - date range

Publish2HTMStartDate The start date of the range

Publish2HTMEndDate The end date of the range

PublishHTMFilterActivCode The activity code to filter on

PublishHTMFilterRef The reference code to filter on

PublishHTMFilterByLink Filter on the link? true or false

PublishFB Publish free busy time if PublishFB is TRUE

PublishFBPath The path to where to publish free busy - must be in URI format
(must start with file:, http:, or ftp:)

PublishFBUser If path is ftp or http, the login user name

PublishFBPwd If path is ftp or http, the login user pwd

PublishFBAction Publish actions

PublishFBAppt Publish appointments

PublishFBCall Publish calls

PublishFBEvent Publish events

Integrating With GoldMine

 335

Name Description
PublishFBLitReq Publish literature requests

PublishFBMsg Publish msgs

PublishFBOccasion Publish occasions

PublishFBOpTask Publish opportunity tasks

PublishFBOther Publish other events

PublishFBProjTask Publish project tasks

PublishFBPubEvent Publish public events

PublishFBSales Publish sales

PublishFBToDo Publish to do's

PublishFBHistAction Publish history actions

PublishFBHistCall Publish call

PublishFBHistEvent Publish event

PublishFBHistLitReq Publish literature request

PublishFBHistMsg Publish message

PublishFBHistOpTask Publish op task

PublishFBHistOther Publish other

PublishFBHistProjTask Publish project task

PublishFBHistPubEvent Publish public event

PublishFBHistSales Publish sales

PublishFBHistToDo Publish todo

PublishFBFilterByDate Dates to publish
0 - today
 1 - yesterday
 2 - tomorrow
 3 - this week
 4 - last week
 5 - next week
 6 this month
 7 last month
 8 next month
 9 - this year
 10 - next year
 11 - date range

PublishFBStartDate The start date of the range

PublishFBEndDate The end date of the range

PublishFBFreq Frequency in minutes

Integrating With GoldMine

336

WRITECALENDARPREFS RETURN VALUES

WriteCalendarPrefs Return Values
Value Description
1 Success

0 No container passed

-1 Not a master rights user or invalid user name

-2 User ini file doesn't exist

-3 Cannot open the cal table

Reading Personal Preferences
The ReadPersonalPrefs function gets the personal preferences for the passed or
current user.

READPERSONALPREFS INPUT NV PAIRS

ReadPersonalPrefs Input NV Pairs
Name Description
UserName User name passed

READPERSONALPREFS OUTPUT NV PAIRS

ReadPersonalPrefs Output NV Pairs
Name Description
UserName User name passed

Title The user’s title

Dept The user’s department

Phone The user’s phone number

Fax The user’s fax

READPERSONALPREFS RETURN CODES

ReadPersonalPrefs Return Codes
Value Description
1 Success

0 No container passed

-1 Not a master rights user or invalid user name

-2 User ini file doesn't exist

Updating Personal Preferences
The WritePersonalPrefs function updates the personal preferences for the passed or
current user.

Integrating With GoldMine

 337

WRITEPERSONALPREFS INPUT NV PAIRS

WritePersonalPrefs Input NV Pairs
Name Description
UserName User name passed

WRITEPERSONALPREFS OUTPUT NV PAIRS

WritePersonalPrefs Output NV Pairs
Name Description
UserName User name passed

Title the user’s title

Dept The user’s department

Phone The user’s phone number

Fax The user’s fax

WRITEPERSONALPREFS RETURN CODES

WritePersonalPrefs Return Codes
Value Description
1 Success

0 No container passed

-1 Not a master rights user or invalid user name

-2 User ini file doesn't exist

Reading Record Preferences
The ReadRecordPrefs function gets the record preferences for the passed or current
user.

READRECORDPREFS INPUT NV PAIRS

ReadRecordPrefs Input NV Pairs
Name Description
UserName User name passed

READRECORDPREFS OUTPUT NV PAIRS

ReadRecordPrefs Output NV Pairs
Name Description
UserName User name passed

UseContactForTitle Use contact instead of company in title – 1 = cont, 0 company

SelectFieldContents When a field gets focus select its contents

AutoOpenOrgTree Open org tree when record object is maximized

ShowDatesInWords Show user-defined dates in words

Integrating With GoldMine

338

Name Description
DateFormat 0 = MMM d, yy

 1 = MMMM dd, yyyy
 2 = d MMM yy
 3 = d. MMM yy
 4 = dd MMMM yy

RightAlignNumbers Show numerics right-aligned

ShowSortByFieldInStatus Show sort-by field on status bar

ZipValidationMode 0= none, 1 primary, 2 show zip dialog

Show9DigitZip Show 5 or 9 digits in zip code lookup validation window

UseDarkBgd Use a dark background color on the RO

LargeFont Use a large font – doesn’t affect 640x480 resolution

LabelColor Windows color for the labels

DataColor Windows color for the data

READRECORDPREFS RETURN CODES

ReadRecordPrefs Return Codes
Value Description
1 Success

0 No container passed

-1 Not a master rights user or invalid user name

-2 User ini file doesn't exist

Updating Record Preferences
The WriteRecordPrefs function updates the record preferences for the passed or
current user.

WRITERECORDPREFS INPUT NV PAIRS

WriteRecordPrefs Input NV Pairs
Name Description
UserName User name passed

UseContactForTitle Use contact instead of company in title – 1 = cont, 0 company

SelectFieldContents When a field gets focus select its contents

AutoOpenOrgTree Open org tree when record object is maximized

ShowDatesInWords Show user-defined dates in words

DateFormat 0 = MMM d, yy
 1 = MMMM dd, yyyy
 2 = d MMM yy
 3 = d. MMM yy
 4 = dd MMMM yy

Integrating With GoldMine

 339

Name Description
RightAlignNumbers Show numerics right-aligned

ShowSortByFieldInStatus Show sort-by field on status bar

ZipValidationMode 0= none, 1 primary, 2 show zip dialog

Show9DigitZip Show 5 or 9 digits in zip code lookup validation window

UseDarkBgd Use a dark background color on the RO

LargeFont Use a large font – doesn’t affect 640x480 resolution

LabelColor Windows color for the labels

DataColor Windows color for the data

WRITERECORDPREFS RETURN CODES

WriteRecordPrefs Return Codes
Value Description
1 Success

0 No container passed

-1 Not a master rights user or invalid user name

-2 User ini file doesn't exist

Reading Schedule Preferences
The ReadSchedulePrefs function gets the schedule preferences for the passed or
current user.

READSCHEDULEPREFS INPUT NV PAIRS

ReadSchedulePrefs Input NV Pairs
Name Description
UserName User name passed

READSCHEDULEPREFS OUTPUT NV PAIRS

ReadSchedulePrefs Output NV Pairs
Name Description
UserName User name passed

ConflictOn Check for timing conflicts when scheduling

CarryCompletionNotesOnFollowUp Carry over completion notes when scheduling follow ups

StartTimerOnComplete Start timer when completing activities

ShowDetailsInActivityListingWindow Show the details section in activity listing window

SyncContactWithActivityListingWindow Sync the contact window with the activity listing window

WarnAboutCompleteMultiLinkActiv Show alert when completing an activity with others
associated.

WarnAboutEditMultiLinkActiv Show alert when editing an activity with others associated

Integrating With GoldMine

340

Name Description
WarnAboutDeleteMultiLinkActiv Show alert when deleting an activity with others

associated

READSCHEDULEPREFS RETURN CODES

ReadSchedulePrefs Return Codes
Value Description
1 Success

0 No container passed

-1 Not a master rights user or invalid user name

-2 User ini file doesn't exist

Updating Schedule Preferences
The WriteSchedulePrefs function updates the record preferences for the passed or
current user.

WRITESCHEDULEPREFS INPUT NV PAIRS

WriteSchedulePrefs Input NV Pairs
Name Description
UserName User name passed

ConflictOn Check for timing conflicts when scheduling

CarryCompletionNotesOnFollowUp Carry over completion notes when scheduling follow ups

StartTimerOnComplete Start timer when completing activities

ShowDetailsInActivityListingWindow How the details section in activity listing window

SyncContactWithActivityListingWindow Sync the contact window with the activity listing window

WarnAboutCompleteMultiLinkActiv Show alert when completing an activity with others
associated.

WarnAboutEditMultiLinkActiv Show alert when editing an activity with others associated

WarnAboutDeleteMultiLinkActiv Show alert when deleting an activity with others
associated

WRITESCHEDULEPREFS RETURN CODES

WriteSchedulePrefs Return Codes
Value Description
1 Success

0 No container passed

-1 Not a master rights user or invalid user name

-2 User ini file doesn't exist

Integrating With GoldMine

 341

Reading Alarm Preferences
The ReadAlarmPrefs function gets the alarm preferences for the passed or current
user.

READALARMPREFS INPUT NV PAIRS

ReadAlarmPrefs Input NV Pairs
Name Description
UserName User name passed

READALARMPREFS OUTPUT NV PAIRS

ReadAlarmPrefs Output NV Pairs
Name Description
UserName User name passed

AlarmType 0 = none, 1 – pop up, 2 – taskbar notifications

AlarmsLead Time before an event that an alarm fires

AlarmFreq Scan for alarm every xx seconds

TaskBarReminder Reminder shown for x minutes

IgnoreSnooze Amount of to snooze an ignored alarm

PageAlarm Page user with alarm when not acknowleged within xx
minutes.

GMAlarmSound Path to the alarm sound

READALARMPREFS RETURN CODES

ReadAlarmPrefs Return Codes
Value Description
1 Success

0 No container passed

-1 Not a master rights user or invalid user name

-2 User ini file doesn't exist

Updating Alarm Preferences
The WriteAlarmPrefs function updates the alarm preferences for the passed or
current user.

WRITEALARMPREFS INPUT NV PAIRS

ReadAlarmPrefs Input NV Pairs
Name Description
UserName User name passed

AlarmType 0 = none, 1 – pop up, 2 – taskbar notifications

Integrating With GoldMine

342

Name Description
AlarmsLead Time before an event that an alarm fires

AlarmFreq Scan for alarm every xx seconds

TaskBarReminder Reminder shown for x minutes

IgnoreSnooze Amount of to snooze an ignored alarm

PageAlarm Page user with alarm when not acknowleged within xx
minutes.

GMAlarmSound Path to the alarm sound

WRITEALARMPREFS RETURN CODES

WriteAlarmPrefs Return Codes
Value Description
1 Success

0 No container passed

-1 Not a master rights user or invalid user name

-2 User ini file doesn't exist

Reading Lookup Preferences
The ReadLookupPrefs function gets the lookup preferences for the passed or current
user.

READLOOKUPPREFS INPUT NV PAIRS

ReadLookupPrefs Input NV Pairs
Name Description
UserName User name passed

READLOOKUPPREFS OUTPUT NV PAIRS

ReadLookupPrefs Output NV Pairs
Name Description
UserName User name passed

SyncContact Sync the contact window with the search center window

InShrunkenMode Appear in shrunken mode when finding by

SyncDelay Lookup alignment delay when typing in tenths of a second

DefField Default lookup field 0 – contact, 1 = company

SelectAction When a rec is selected in search cente
0 = move the search center window to the back
 1 = close the search center window
 2 = minimize the search center windowr

Integrating With GoldMine

 343

READLOOKUPPREFS RETURN CODES

ReadLookupPrefs Return Codes
Value Description
1 Success

0 No container passed

-1 Not a master rights user or invalid user name

-2 User ini file doesn't exist

Updating Alarm Preferences
The WriteLookupPrefs function updates the lookup preferences for the passed or
current user.

WRITELOOKUPPREFS INPUT NV PAIRS

WriteLookupPrefs Input NV Pairs
Name Description
UserName User name passed

SyncContact Sync the contact window with the search center window

InShrunkenMode Appear in shrunken mode when finding by

SyncDelay Lookup alignment delay when typing in tenths of a second

DefField Default lookup field 0 – contact, 1 = company

SelectAction When a rec is selected in search cente
0 = move the search center window to the back
 1 = close the search center window
 2 = minimize the search center windowr

WRITELOOKUPPREFS RETURN CODES

WriteLookupPrefs Return Codes
Value Description
1 Success

0 no container passed

-1 Not a master rights user or invalid user name

-2 user ini file doesn't exist

Reading Pager Preferences
The ReadPagerPrefs function gets the pager preferences for the passed or current
user.

Integrating With GoldMine

344

READPAGERPREFS INPUT NV PAIRS

ReadPagerPrefs Input NV Pairs
Name Description
UserName User name passed

READPAGERPREFS OUTPUT NV PAIRS

ReadPagerPrefs Output NV Pairs
Name Description
UserName User name passed

GoldPageInstalled Is the goldpage application installed?

Terminal Terminal pager number

PIN The pin for the pager

MaxChars The number of max chars for a pager

PagerEmail Email page address

READPAGERPREFS RETURN CODES

ReadPagerPrefs Return Codes
Value Description
1 Success

0 No container passed

-1 Not a master rights user or invalid user name

-2 User ini file doesn't exist

Updating Pager Preferences
The WritePagerPrefs function updates the pager preferences for the passed or
current user.

WRITEPAGERPREFS INPUT NV PAIRS

WritePagerPrefs Output NV Pairs
Name Description
UserName User name passed

GoldPageInstalled Is the goldpage application installed?

Terminal Terminal pager number

PIN The pin for the pager

MaxChars The number of max chars for a pager

PagerEmail Email page address

Integrating With GoldMine

 345

WRITEPAGERPREFS RETURN CODES

WritePagerPrefs Return Codes
Value Description
1 Success

0 No container passed

-1 Not a master rights user or invalid user name

-2 User ini file doesn't exist

Reading Miscellaneous Preferences
The ReadMiscPrefs function gets the miscellaneous preferences for the passed or
current user.

READMISCPREFS INPUT NV PAIRS

ReadMiscPrefs Input NV Pairs
Name Description
UserName User name passed

READMISCPREFS OUTPUT NV PAIRS

ReadMiscPrefs Output NV Pairs
Name Description
ShowWhatsNew Show whats new in the info center when logging in

TimeIn24Hr Show time in 24/military style

DateInLocalFormat Show dates in local format

ShowPageStatus Show status while paging

OldMenu Use the old GM4 style menu

EPOCH The EPOCH year

MSMailUser The MS outlook username if not the same as the GM user name

READMISCPREFS RETURN CODES

ReadPagerPrefs Return Codes
Value Description
1 Success

0 No container passed

-1 Not a master rights user or invalid user name

-2 User ini file doesn't exist

Integrating With GoldMine

346

Updating Miscellaneous Preferences
The WriteMiscPrefs function updates the miscellaneous preferences for the passed or
current user.

WRITEMISCPREFS INPUT NV PAIRS

WriteMiscPrefs Input NV Pairs
Name Description
ShowWhatsNew Show whats new in the info center when logging in

TimeIn24Hr Show time in 24/military style

DateInLocalFormat Show dates in local format

ShowPageStatus Show status while paging

OldMenu Use the old GM4 style menu

EPOCH The EPOCH year

MSMailUser The MS outlook username if not the same as the GM user name

WRITEMISCPREFS RETURN CODES

WriteMiscPrefs Return Codes
Value Description
1 Success

0 No container passed

-1 Not a master rights user or invalid user name

-2 User ini file doesn't exist

Reading the Database Engine Type (7.0 or higher)
The GetDbEngineType function gets the database engine type based on a passed
table name.

GETDBENGINETYPE INPUT NV PAIRS

GetDbEngineType Input NV Pairs
Name Description
Table The table name you are trying to open - if not passed, assumed to be CONTACT1

GETDBENGINETYPE RETURN CODES

GetDbEngineType Return Codes
Value Description
0 No container passed

-1 Table name not passed

-2 Table name invalid

-3 Could not open table

Integrating With GoldMine

 347

Value Description
1 Table is MSSQL

2 Table is Firebird

3 or higher Unknown DB type

Reading a List of GoldMine User Groups
The GetGMUserGroups function returns a list of GoldMine user groups and their
users.

GETGMUSERGROUPS OUTPUT NV PAIRS

GetGMUserGroups Output NV Pairs
Name Description
GROUP NV container for EACH group containing:

 GroupNumber – the group’s internal number
 Name – the name of the group
 UserCount – the number of users in the group
 UserList – a list of the users in the group delimited by ;

GETGMUSERGROUPS RETURN CODES

GetGMUserGroups Return Codes
Value Description
1 Success

0 No container passed

-1 Could not open data tables

Creating or Updating GoldMine User Groups
The WriteGMUserGroup function creates or updates a GoldMine user group.

WRITEGMUSERGROUP INPUT NV PAIRS

WriteGMUserGroup Input NV Pairs
Name Description
Name The name of the group to update or create

RecID The record number of the group if updating

WRITEGMUSERGROUP RETURN CODES

WriteGMUserGroup Return Codes
Value Description
0 No container passed

-1 No group name

-2 Could not write data

Integrating With GoldMine

348

Value Description
-3 Not a master user

-4 Could not lock record

1 Success

Adding a GoldMine User to a Group
The AddGMGroupUser function adds a GoldMine user to a group.

ADDGMGROUPUSER INPUT NV PAIRS

AddGMGroupUser Input NV Pairs
Name Description
UserName The name of the user to add to the group

GroupName The group name or the group number to add the user to

ADDGMGROUPUSER RETURN CODES

AddGMGroupUser Return Codes
Value Description
0 No container passed

-1 No name or group passed

-2 Could not open users table

-3 Could not lock user record

-4 Could not find user record

-5 Invalid group passed

-6 Not a master user

1 Success or user already group member

Removing a GoldMine User from a Group
The RemoveGMGroupUser function removes a GoldMine user from a group.

REMOVEGMGROUPUSER INPUT NV PAIRS

RemoveGMGroupUser Input NV Pairs
Name Description
UserName The name of the user to remove from the group

GroupName The group name or the group number to remove the user from

Integrating With GoldMine

 349

REMOVEGMGROUPUSER RETURN CODES

RemoveGMGroupUser Return Codes
Value Description
0 No container passed

-1 No name or group passed

-2 Could not open users table

-3 Could not lock user record

-4 Could not find user record

-5 Invalid group passed

-6 Not a master user

1 Success or user already group member

Creating or Updating an Opportunity or Project
The WriteOpProj function updates an opportunity or project.

WRITEOPPROJ INPUT NV PAIRS

In addition to the following, the user can pass the custom user defined fields (GM 6.6
or higher) that they have created.
WriteOpProj Input NV Pairs

Name Description
RecID If the item is an update – the recid of the item to update

OpID The opportunity rec id to attach to

RecType O or P

AccountNo The contact to attach to’s account no

User The gm user to assign the item to

Flags Flags for the item

Company The company this item involves

Contact The contact the item involves

Name Name of the item

Status The status of the item

Cycle The cycle of the item

Stage The item’s stage

Source The item’s source

F1 The F1 value

F2 or CompRecID The rec id of the company from Company field

F3 or Units The number of units this item involves

StartDate The start date

ClosedDate The date closed

Integrating With GoldMine

350

Name Description
CloseBy The date to close by

ForProb The probability of the item success

ForAmt The projected value of the item

CloseAmt The actual value of the item

Notes Item notes

WRITEOPPROJ RETURN CODES

WriteOpProj Return Codes
Value Description
1 Success

0 No container passed

Integrating With GoldMine

 351

Working with GoldMine Plug-ins

This chapter contains information geared toward individuals with at least an
intermediate knowledge of programming.

GoldMine 7.0 supports integrations based on ActiveX controls or HTML. To use
either of these integration methods, you must first create an ActiveX control or an
HTML file or web site to integrate with.

Using ActiveX Plug-in Support
The ActiveX structure allows the most control and can be made with almost any
language, including C++, Delphi, VB and the .NET languages. When used in
conjunction with the other GoldMine APIs, Active X is extremely powerful.

Within the ActiveX support, there are 5 methods that can be implemented in your
control to allow for stronger interaction with GoldMine. These functions are not
necessary to implement:

public void GMOnStart(long hWnd)

This is the only function that passes a parameter. The parameter is the HWND
(window handle) of the container window in GoldMine. You can then use the
Windows API SendMessage() call to control what happens to the container. This is
for situations where you want to implement a Close button, since the control is late
bound in GoldMine, and cannot expose events.

public void GMOnActivate()

Integrating With GoldMine

352

This function will tell you when the user has given your control’s container focus in
GoldMine.

public void GMLostFocus()

Called whenever the user gives focus to another object when your control had focus.
public void GMOnDestruct()

Called when the window is just about to close. This allows you the opportunity to
clean up.

public void GMHandleFile(BSTR sPath)

Used to open associated files with your plug-in. the passed Path is the path to the file
itself that your plug-in described it could handle.

Using HTML Plug-in Support
HTML plug-in support also has great potential. The HTML will attempt to call a
JavaScript or VBScript function named like the last 3 ActiveX methods, with exactly
the same capabilities:

GMOnActivate()

GMLostFocus()

GMOnDestruct()

The GMOnStart() function is not supported in HTML.

Plug-In Description File
The plug-in description file is a well formed XML file that describes the plug-in. The
extension for the file is .GME (for GoldMine Extension).

HTML Plug-in Description File
The following example shows the structure for the HTML plug-in.

<PlugInDefs>

 <PlugInDef>

 <URL>http://gmail.google.com/gmail</URL>

<QueryString>q=<<&Address1>>,
<<&City>>, <<&State>>,
<<&Zip>></QueryString>

 <Description>

 <Language Locale="1033" IsDefault="1">

 <Name>G-Mail</Name>

 <Publisher>Google</Publisher>

 <Description>Launches Google's Gmail
Service</Description>

 <Menu>Launch GMAIL</Menu>

 <MenuPath>Web Based Tools\\Google</MenuPath
>

Integrating With GoldMine

 353

 </Language>

<Language Locale="4000">

 <Name>eegay ale-may</Name>

 <Publisher>oogle-Gay</Publisher>

 <Description>aunches-Lay oogle-Gay’s eegay
ale-may Urvice-Say</Description>

 <Menu>aunch-Lay eegay ale-may</Menu>

 <MenuPath>eb-Way ased-Bay ools-Tay\\oogle-
Gay</MenuPath >

 </Language>

 </Description>

 <OnDemand>1</OnDemand>

 <Startup>1</Startup>

 <MultipleInstance>0</MultipleInstance>

 <Modal>0</Modal>

 <DefaultPos>

 <top>50</top>

 <left>50</left>

 </DefaultPos>

 <DefaultSize>

 <width>800</width>

 <height>600</height>

 </DefaultSize>

 <Visible>1</Visible>

<IconFile>google.ico</IconFile>

<InternalName>GOOGLE_MAIL</InternalName>

 </PlugInDef>

</PlugInDefs>

The root node must be PlugInDefs, and as the name implies, multiple plug-ins can
be installed under one definition file. For each plug-in, there is one PlugInDef. The
child nodes for PlugInDef are:

Node Description
<URL> The URI for the html or site – must be http://, https:// or

file://
<QueryString> The querystring to be tacked on to the end of the URL.

Can contain GoldMine field macros that will be
evaluated on launch of the plug-in. The macro wrapping
structure is <<field>>, like <<&Contact>> or
<<Contact1->AccountNo>>. Please note that you must
XMLEncode the macros like above.

<Description> These values describe the item to the user.
<Language> Uses the locale code associated with the target

language. One Langauge structure must be marked as
IsDefault, and this one is used in case the target
language is not supported by the plug-in. Always use
XML entities in place of extended characters. (Ñ would
be Ñ)

Integrating With GoldMine

354

<Name> The dialog name and used for security
<Publisher> Your company name – creates a sub menu under the

Plug-ins menu if MenuPath not passed
<Description> used in the Help->About Plug-ins button (not there yet)
<Menu> the text that the user sees for a menu item.
<MenuPath> Creates a hierarchical set of menus, with each

submenu delimited by “\\” – double backslashes
<OnDemand> determines if the plug-in is added to the plug-ins menu.

1 = True, 0 = False. If false – then the item is started up
with GoldMine.

<StartUp> determines if the item is started up with GoldMine. This
is for situations where you want it to come up – but if the
user closes the window – you want them to be able to
access the plug-in via a menu. 1 = startup with
GoldMine, 0= don’t start with GoldMine.

<MultipleInstance> determines if multiple instances of the plug-in are
allowed. 1 = allow multiple instances, 0 = false. If false,
if the user chooses the menu item for that plug-in – then
GoldMine will bring that window to the front and give it
focus. non-OnDemand, Modal and non-visible plug-ins
are automatically single instance.

<Modal> determines if any action can occur outside of the
window in GoldMine. 1= Modal, 0 = Modeless.
Startup/non-OnDemand items cannot be modal. Modal
items are strictly single instance.

<DefaultPos> describes the coordinates where your dialog will first
show up. This is only used the first time the plug-in is
run, and is ignored for Modal plug-ins, which are
automatically centered in relation to the GoldMine
window.

<top> Number of pixels from the top of the screen.
<left> Number of pixels from the left of the screen.

<DefaultSize> describes the height and width of the dialog for first time
use, or for modal windows – which cannot be resized.

<width> Width of the window in pixels.
<height> Height of the window in pixels.

<Visible> determines if the user can see the window. Not
recommended for HTML based plug-ins.

<IconFile> if you have an ico file that you want the item to use, then
put it in the plug-ins folder and specify it here.

<InternalName> this is a name that you give to your plug-in that can then
be used in the INI files to block/grant access. If it is not
passed it will be made up of a concatenation of the
Publisher name and the Name fields for the default
locale, using only the following characters:

“ABCDEFGHIJKLMNOPQRSTUVWXYZ_1234567890
”

ActiveX Plug-in Description File
The following example shows the structure for the ActiveX plug-in.

<PlugInDefs>

Integrating With GoldMine

 355

 <PlugInDef>

 <ProgID>myApp.ClassInstance</ProgID>

<Installer>myAppInstaller.exe</Installer>

 <Description>

 <Language Locale="1033" IsDefault="1">

 <Name>My Fantastical App</Name>

 <Publisher>JCS</Publisher>

 <Description>This app does it
all!!!</Description>

 <Menu>The most amazing app EVER</Menu>

 <MenuPath>You\\Can\\Expect\\To
Be\\AMAZED</MenuPath >

 </Language>

<Language Locale="4000">

 <Name>eegay ale-may</Name>

 <Publisher>oogle-Gay</Publisher>

 <Description>aunches-Lay oogle-Gay’s eegay
ale-may Urvice-Say</Description>

 <Menu>aunch-Lay eegay ale-may</Menu>

<MenuPath> ou-Yay\\an-Kay\\Expect-ay\\o-tay ebay\\AMAZED-
AY</MenuPath >

 </Language>

 </Description>

 <OnDemand>1</OnDemand>

 <Startup>1</Startup>

 <MultipleInstance>0</MultipleInstance>

 <Modal>0</Modal>

 <DefaultPos>

 <top>50</top>

 <left>50</left>

 </DefaultPos>

 <DefaultSize>

 <width>800</width>

 <height>600</height>

 </DefaultSize>

 <Visible>1</Visible>

<IconFile>MYAPP.ico</IconFile>

<InternalName>BEST_APP_EVER</InternalName>

<HandledFileExtensions>doc;xls;pdf;txt;ini</HandledFileExtension
s>

<Methods>

 <Method>

 <Language Locale="1033" IsDefault="1">

Integrating With GoldMine

356

 <Menu>Launch The app</Menu>

 </Language>

 </Method>

 <Method call="Configure">

 <Language Locale="1033" IsDefault="1">

 <Menu>Configure the bliss</Menu>

 </Language>

 <Language Locale="4000">

 <Menu>Onfigure-Kay ah-they iss-
blay</Menu>

 </Language>

 </Method>

 </Methods>

 </PlugInDef>

</PlugInDefs>

Although it is very similar to the HTML plug-in description, there are 2 primary
differences: the ProgID and Installer nodes instead of the URL and QueryString
nodes.
The ProgID is the ProgID for your ActiveX control, and the Installer is the installer
name for the application. The Installer should be located in a folder named Installers
under the plug-in directory.

There is also the “HandledFileExtensions” element that can be added to handle files
of certain extensions with your plug-in internally in GoldMine. This means that if
there is a linked document, email attachment, or other internally attached file that
would normally launch a third party application, the path to the file will be passed
to your plug-in via the GMHandleFile call. This does not mean external to
GoldMine that opening that file will launch GoldMine and your plug-in. However, it
should be a simple task to write an .exe wrapper for your plug-in (since its ActiveX
based, after all) and associate the file types to that exe wrapper.

The Methods Section allows you to call custom methods in your application. When
in use the Description’s Menu node becomes a sub-menu with all of the methods
that you have described. A method is described by the Method node with an
optional attribute “call” which tells GoldMine what internal method to call. The
internal method must be public and expect no parameters. It must also return
nothing (void or sub). The language portion works exactly like the description
node’s does – except it only has the Menu entry.

Security and Plug-in Directories
Using GM.INI or the User.INI, a user/admin can block the use of plug-ins
altogether, block individual plug-ins and also add user specific directory for more
plug-ins.

Integrating With GoldMine

 357

Security
For security, GM.INI has precedence over the user INI file. There are two methods –
Optimistic and Pessimistic. You can have different methods for GM.INI and the user
INI, but Pessimistic will win out.

The Optimistic method is as follows:
[PlugIns]

allow_by_default=1

The Pessimistic method is as follows:
[PlugIns]

deny_by_default=1

If you had allow_by_default=0, then this would be the same as deny_by_default=1 –
and vice versa. If the keys are missing, then the method is assumed to be Optimistic.

If you are using the Optimistic method, then you do not have to add anything
besides blocked plug-ins to the INI files. If you are using the Pessimistic method,
then you must give a plug-in permission to run.

For example, if you have a plug-in with a Name node of “Evil Plugin …”

The INI name for this would be EVILPLUGIN unless you added the InternalName
element to your plug-in description.

To block the plug-in with Optimistic mode:
[PlugIns]

allow_by_default=1 or deny_by_default=0

EVILPLUGIN=0

To allow a plug-in with Pessimistic mode:
[PlugIns]

deny_by_default=1 or allow_by_default=0

GOODPLUGIN=1

Adding a Local Plug-in Directory
By default – the plug-in directory is under %SysDir%/Plug-ins and in server installs
this means that all users will have the plug-ins under that folder. If a user wanted to
add his own local plug-in directory – he could add it to his user INI:

[PlugIns]

LocalPath=c:\personal\GMPlugIns

The user will still get the global level programs (assuming they’re not blocked) – so
make sure there’s no duplication between the two.

Sample Plug-ins
The following are examples of the GoldMine plug-in capabilities

Integrating With GoldMine

358

gmail.gme
This plug-in opens a browser window to the Google mail address. It demonstrates
the basic capability of opening a browser window from GoldMine.

<?xml version="1.0" encoding="UTF-8"?>

<PlugInDefs>

 <PlugInDef>

 <URL>http://gmail.google.com/gmail</URL>

 <Description>

 <Language Locale="1033" IsDefault="1">

 <Name>G-Mail</Name>

 <Publisher>Google</Publisher>

 <Description>Launches Google's Gmail
Service</Description>

 <Menu>Launch GMAIL</Menu>

 </Language>

 </Description>

 <OnDemand>1</OnDemand>

 <Startup>1</Startup>

 <MultipleInstance>0</MultipleInstance>

 <Modal>0</Modal>

 <DefaultPos>

 <top>50</top>

 <left>50</left>

 </DefaultPos>

 <DefaultSize>

 <width>800</width>

 <height>600</height>

 </DefaultSize>

 <Visible>1</Visible>

 </PlugInDef>

</PlugInDefs>

External.gme
This plug-in allows a user to store more than the 254 custom fields for a contact
record externally. Users can select any contact record, then select the plug in, to
either add new information or update existing information depending on what is
found in the database.

<?xml version="1.0" encoding="UTF-8"?>

<PlugInDefs>

 <PlugInDef>

 <URL>http://localhost/gmplus.asp</URL>

 <QueryString>accountno=<<&Accountno>></QueryStr
ing>

Integrating With GoldMine

 359

 <Description>

 <Language Locale="1033" IsDefault="1">

 <Name>Extra Fields</Name>

 <Publisher>Robie</Publisher>

 <Description>Access External
Tables</Description>

 <Menu>Access External Tables</Menu>

 </Language>

 </Description>

 <OnDemand>1</OnDemand>

 <MultipleInstance>1</MultipleInstance>

 <Modal>0</Modal>

 <DefaultPos>

 <top>50</top>

 <left>50</left>

 </DefaultPos>

 <DefaultSize>

 <width>600</width>

 <height>590</height>

 </DefaultSize>

 <Visible>1</Visible>

 </PlugInDef>

</PlugInDefs>

gmplus.asp
Following is the source listing for gmplus.asp, which is the corresponding ASP page
for the External.gme plug-in.

 Note: The following code sample uses text wrapping in order to fit the
sample on these pages. Make sure that the lines in your actual code do not
wrap.

<html>

<body>

<h3>External Location Information</h3>

<%

Dim action

Dim DSNConnection

Dim SQLTable

'Update the DSN information here to access the SQL database HERE.

DSNConnection = "Driver=SQL
Server;Server=CompanyServerName;Database=GMplus;Uid=sa;Pwd=sa;"

'Update to table in database

SQLTable = "GoldPlus"

'add/edit additional fields here

Dim strdocument, strlocation, strextrastuff1, straccountno

Integrating With GoldMine

360

'add/edit additional fields here too

strdocument = Replace(Request("document"), "'", "''")

strlocation = Replace(Request("location"), "'", "''")

strextrastuff1 = Replace(Request("extrastuff1"), "'", "''")

straccountno = Replace(Request("accountno"), "'", "''")

'This section updates fields if the accountno is found in the
database

if Request("action")="update" then

set conn=Server.CreateObject("ADODB.Connection")

conn.Open (DSNConnection)

'This is the SQL statement that updates information, so you will need
to add/edit fields here too.

set rs = Server.CreateObject("ADODB.recordset")

strSQL = "UPDATE "+ SQLTable +" SET document = '" + strdocument +"',
location = '" + strlocation + "', extrastuff1 = '" + strextrastuff1 +
"' WHERE accountno = '" + straccountno + "'"

Conn.Execute (strSQL)

conn.close

set conn = nothing

set strSQL = nothing

'This does a redirect to the update page once the data is entered
into the SQL database

Response.write("<meta http-equiv=refresh
content=0;url=gmplus.asp?accountno=" + straccountno + ">")

'**

'This section does the addition of the fields if they are not found
in the database

else if Request("action")="add" then

set conn=Server.CreateObject("ADODB.Connection")

conn.Open (DSNConnection)

'This adds new information if it is not found in the database

set rs = Server.CreateObject("ADODB.recordset")

strSQL = "INSERT INTO "+ SQLTable +"
(accountno,document,location,extrastuff1) VALUES ('" + straccountno +
"','" + strdocument + "','" + strlocation + "','" + strextrastuff1 +
"')"

Conn.Execute (strSQL)

conn.close

set conn = nothing

Integrating With GoldMine

 361

set strSQL = nothing

'This does a redirect to the update page once the data is entered
into the SQL database.

Response.AddHeader "Location", "/gmplus.asp?accountno='" +
straccountno + "'"

end if

set conn=Server.CreateObject("ADODB.Connection")

conn.Open (DSNConnection)

set rs = Server.CreateObject("ADODB.recordset")

rs.Open "SELECT accountno, document, location, extrastuff1 from "+
SQLTable +" where accountno ='"+ straccountno +"'" , conn

'**

 'if the AccountNo is NOT found, display the ADD form

 if rs.eof AND rs.bof then

%>

<form action="gmplus.asp" method="get">

<input type="hidden" name="action" value="add">

<% Response.Write("<input type=hidden name=accountno value="+
straccountno +">")%>

<table border="1">

 <tr>

 <td>Document</td><td><input type="text" name="document"
size="30"></td>

 <tr>

 </tr>

 <td>Location</td><td><input type="text" name="location"
size="30"></td>

 <tr>

 </tr>

 <td>Extra Stuff 1</td><td><input type="text"
name="extrastuff1" size="30"></td>

 </tr>

</table>

<input type="Submit" value="add">

</form>

<%'**

 else

'if the AccountNo IS found, display the UPDATE form

%>

<form action="gmplus.asp" method="get">

<input type="hidden" name="action" value="update">

Integrating With GoldMine

362

<% Response.Write("<input type=hidden name=accountno value="+
straccountno +">")%>

<table border="1">

 <tr>

 <td>Document</td><td><input type="text" name="document"
value="<%= rs("document") %>" size="30"></td>

 </tr>

 <tr>

 <td>Location</td><td><input type="text" name="location"
value="<%= rs("location") %>" size="30"></td>

 </tr>

 <tr>

 <td>Extra Stuff 1</td><td><input type="text"
name="extrastuff1" value="<%= rs("extrastuff1") %>" size="30"></td>

 </tr>

</table>

<input type="Submit" value="update">

</form>

<%'**

 end if

end if

%>

</body>

</html>

Integrating With GoldMine

 363

Using Xbase Expressions

This chapter contains information geared toward individuals with at least an
intermediate knowledge of programming.

Improper use of these functions may result in data that is not recoverable. Be sure to
back up your data frequently.

For details on data backups, see “Backing up Data” in Maintaining GoldMine.

GoldMine offers a variety of Xbase expression functions to:

• Manipulate data for comparison, such as for creating filters and groups.

• Store data, such as for global replacements and updates to field data
(LOOKUP.INI).

• Evaluate and return data when using DDE and GMXS32.DLL function
calls.

To ensure that your Xbase functions work correctly, GoldMine also features a real-
time expression tester. To activate the tester on an active record window, press Ctrl-
Shift-D.

Integrating With GoldMine

364

Xbase functions are also known as dBASE functions.

Filter expressions work equally well on Xbase or SQL tables. With SQL, the Xbase
filter is evaluated on the client side, not the server side.

The following pages list Xbase functions in three sections:

• Function/Parameter Types

• Conditionals, Operators, and Logical Evaluators

• Xbase Functions

Function/Parameter Types
Xbase functions recognize and return several types of data. These data types
represent the format of the data, such as a number. To properly evaluate and return
a value, a function must include the correct parameter types. For example, a function
may require that a date be passed as a parameter. Trying to pass a name to the
function would not be accepted. In many cases, you can use a special function to
convert one data type to another.

Data types may be referenced literally, either as a field name of a specific type, or as
the result of an Xbase function.

The following list describes valid data types for Xbase functions and shows
examples of use when referenced as a literal, field value, or function result.

String Sequence of any printable character.
Literal use: "my string"
Field use: Upper(Contact1->Company)
Function Use: Upper(Substr("test123",5,3))

Date Special numeric value representing a date.
Literal use: {03/10/1999}
Field use: DTOS(Contact2->UBirthday)
Function use: DTOS(DATE())

Numeric Value representing a number.
Literal use: 100
Field use: STR(Contact2->UBalance)
Function use: STR(100 + VAL("100"))

Boolean Value that results whenever a comparison is made. Boolean values are either
TRUE or FALSE.

For an expanded description of Boolean expressions, see “Using Boolean Expressions” in the online
Help.

Conditionals, Operators, and Logical Evaluators
A function can manipulate values by using one of the following:

Integrating With GoldMine

 365

• Conditional: Compares one value to another, using the specified standard
or condition, such as “equal to,” “greater than,” and so on.

• Operator: Performs an arithmetic operation on the values, such as
addition or multiplication.

• Logical evaluator: Compares values as a true/false condition, so that a
value either meets or fails the standard for selection. This type of
comparison is also known as a Boolean operator.

You can use the following conditionals, operators, and logical evaluators in
conjunction with the Xbase functions.

Conditionals

Conditional: >

Description: Greater than

Applies to: All types

Examples: 1>2 returns: FALSE

 "BBC">"ABC" returns: TRUE

 Date()>Date()-10 returns: TRUE

Conditional: <

Description: Less than

Applies to: All types

Examples: 300<400 returns: TRUE

 "MARCELA"<"NELSON" returns: TRUE

 Date() < Date()-7 returns: FALSE

Integrating With GoldMine

366

Conditional: <>

Description: Greater/Less than (not equal)

Applies to: All types

Examples: 250<>2500 returns: TRUE

 "ABC"<>UPPER("abc
")

returns: FALSE

 Date()<>Date()+3 returns: TRUE

Conditional: >=

Description: Greater than or Equal to

Applies to: All types

Examples: 100>=99 returns: TRUE

 "ABC">="BBC" returns: FALSE

 Date()+10>=-Date() returns: TRUE

Conditional: <=

Description: Less than or equal to

Applies to: All types

Examples: 100<=99 returns: FALSE

 "ABC"<="BBC” returns: TRUE

 Date()+10<=Date() returns: FALSE

Operators

Operator: +

Description: Adds one value to another value

Applies to: All types

Examples: "ABC"+"DEF
"

returns: "ABCDEF"

 100+23 returns: 123

 Date()+7 returns: date one week from today

Integrating With GoldMine

 367

Operator: -

Description: Subtracts one value from another value

Applies to: Numeric and Date types

Examples: 123-100 returns: 23

 Date()-140 returns: date of two
weeks ago

Operator: /

Description: Divides one number by another

Applies to: Numeric type

Example: 100/4 returns: 25

Operator: *

Description: Multiplies one value by another

Applies to: Numeric type

Example: 100*5 returns: 500

Operator: %

Description: Modulus

Applies to: Numeric type

Example: 100%33 returns: 1

Logical Evaluators
Logical: .OR.

Description: Returns TRUE if either condition is TRUE

Example: State="CA" .OR. Zip="99999"

Logical: .AND.

Description: Returns TRUE only if all conditions are TRUE

Example: Company="FrontRange Solutions" .AND. Phone1="(310)454-6800"

Integrating With GoldMine

368

Logical: .NOT.

Description: Returns the opposite of the condition being tested

Example: .NOT. City="San Francisco”

Xbase Functions
GoldMine recognizes four types of Xbase functions as valid

• String: Use primarily for manipulating string data types. A string
function can return other data types.

• Date: Use for any date-related operations. A date function can return
other data types.

• Numeric: Use for numeric operations. A numeric function can return
other data types.

• Miscellaneous: Additional functions that fall outside of the previous
three categories of data types. These may return any type of data.

For convenience, functions are listed under these four categories, according to how
they are most typically used. For example, under “Date Functions,” you will find
those functions that return numeric or string types from dates.

String Functions
ALLTRIM(<string>) Returns a string value with both leading and trailing spaces

from <string>.
Return type: String
Example
“[“+ALLTRIM(“ This is a test “)+”]”
returns [This is a test].

ASC(<char>) Returns the ASCII decimal value for <char>.
Return type: Numeric
Example
ASC(“A”)
returns 65.

AT(<string1>,
<string2>)

Returns the first position of <string1> in <string2>.
Return type: String
Example
AT(“a”, “once upon a time”)
returns 11.

CHR(<byte>) Returns the ASCII character value for <byte>.
Return type: String
Example
CHR(65)
returns A.

Integrating With GoldMine

 369

FMTTIME(<time>) Returns a character string (hh:mmap format) derived from <time>.
Return type: String
Example
FMTTIME(TIME())
returns 2:28p.

HTTPSTR(<string>)

Returns <string> with all nonletter/number characters replaced with
%values.
Return type: String
Example
HTTPSTR(“www.Website.com/some dir/”)
returns www.Website.com%2Fsome%20dir%2F.

IIF(<condition>,<true
result>,<false result>)

Returns either <true result> or <false result>, depending on the
Boolean evaluation of <condition>.
Return type: Logical
Example
IIF (99 < 100, “Value is Less than 100”, “Value is more than 100”)
returns “Value is Less than 100”.

LEFT(<string>, <length>) Returns the leftmost <length> characters from <string>.
Return type: String
Example
LEFT("Four score and seven",10)
returns Four score.

LEN See LENGTH below.

LENGTH(<string>) Returns the number of characters in <string>.
Return type: Numeric
Example
LENGTH("This is a test")
returns 14.

LOWER(<string>) Returns <string> in lower-case letters.
Return type: String
Example
LOWER("TEST THIS FUNCTION")
returns test this function.

LTRIM(<string>) Returns <string> with all leftmost spaces removed.
Return type: String
Example
"[" + LTRIM(" This is a test " + "]"
returns [This is a test].

LTRIMPAD(<string>,
<length>, <fill>)

Returns <string> with leftmost spaces removed and padded to
<length> with <fill> character.
Return type: String
Example
"["+LTRIMPAD(" 1341", 10, "0")+"]"
returns 0000001341.

Integrating With GoldMine

370

MID(<string>, <start>,
<length>)

Returns the string of <length> characters starting at position <start>
within <string>.
Return type: String
Example
MID("Four score and seven",6,5)
returns score.

PAD(<string>, <length>,
<fill>, <mode>)

Returns <string> padded to <length> with the <fill> character.
<fill>
This optional parameter defaults to a space.
<mode>
can be 0 for right pad (default), 1 for centered, and 2 for left pad.
Return type: String
Example
PAD(“TEST”, 8, “x”, 1)
returns xxTESTxx.

PADL(<string>, <length>,
<fill>)

Returns <string> padded to <length> with the <fill> character.
<fill>
This optional parameter defaults to a space. PADL pads from the left.
Return type: String
Example
PADL("TEST", 8, "x")
returns xxxxTEST.

PADR(<string>, <length>,
<fill>)

Same as PADL, except that PADR pads the string to the right.
Return type: String
Example
PADR("TEST", 8, "x")
returns TESTxxxx.

PROPER(<string>) Returns a string in which the first letter of each word in <string> is
capitalized, and the all following letters are lower-case.
Return type: String
Example
PROPER("fighting IRISH")
returns Fighting Irish.

RAT(<string1>,string2>) Returns the last position of <string1> in <string2>.
Return type: Numeric
Example
RAT("t", "this is a test.")
returns 14.

RIGHT(<string>,
<length>)

Returns the rightmost <length> characters from <string>.
Return type: String
Example
RIGHT("Four score and seven",5)
returns seven.

RTRIM(<string>) Returns <string> with all rightmost spaces removed.
Return type: String
Example
"[" + RTRIM(" This is a test " + "]"
returns [This is a test].

Integrating With GoldMine

 371

STR(<value>,<length>,
<decimals>,<fill char>)

Returns the numeric <value> formatted as a string. The <value>
parameter is required. All other parameters are optional. The <length>
parameter pads the number to the left with spaces or with the <fill char>
if specified.
Return type: String
Example
STR(456, 7, 2, "0")
returns 0456.00.

STRTRAN(<string1>,
<string2>, <string3>)

Returns a string based on <string1> with all occurrences of <string2>
translated to <string3>.
Return type: String
Example
STRTRAN("A1B1C1D1", "1", "x")
returns AxBxCxDx.

SUBSTR(<string>,
<start>, <length>)

Returns the string of <length> characters starting at position <start>
within <string>.
Return type: String
Example
SUBSTR("Four score and seven",6,5)
returns score.

TRIM(<string>) See RTRIM.

UPPER(<string>) Returns the <string> in upper case.
Return type: String
Example
UPPER("this is a test")
returns THIS IS A TEST.

WORD(<string>, <pos>) Returns the <pos> word within <string>.
Return type: String
Example
WORD("this is a test for the WORD function", 4)
returns test.

Integrating With GoldMine

372

Date Functions
ACCDATE(<string>) Returns a date value for <string>, where <string> is a valid GoldMine

AccountNo.
Return type: Date
Example
ACCDATE(Contact1->ACCOUNTNO)
returns 4/20/99.

AGE(<date>) Returns the age in years since <date>.
Return type: Numeric
Example
AGE(Contact2->UBDATE)
returns 32.

CTOD(<string>) Returns a date value based on <string>. The <string> parameter should be
in the format: mm/dd/yy.
Return type: Date
Example
CTOD("4/20/99")+5
returns 4/25/99.

DATE() Returns today’s date in date format. To add/subtract from this value, simply
use the number of days in your expression. For example: DATE()+7 will
add seven days to today's date.
Return type: Date
Example
Assuming today’s date is 4/20/99, DATE()+7
returns 4/27/99.

DAY(<date>) Returns that day of the month for the specified <date>.
Return type: Numeric
Example
DAY(DATE())
returns 18.

DOBINDAYS(<date>) Returns the number of days until the month/day in <date>.
Return type: Numeric
Example
DOBINDAYS(STOD("19681024"))
returns 232.

DOW(<date>) Returns the day of the week in numeric format; for example, Sunday = 0,
Monday = 1, and so on
Return type: Numeric
Example
DOW(STOD("19990909"))
returns 4.

Integrating With GoldMine

 373

DOY(<date>) Returns the number of days elapsed from the beginning of the year in
<date> to the month/day in <date>.
Return type: Numeric
Example
DOY(Contact2->UDATE)
returns 220.

DTOC(<date>) Returns a character string (MM/DD/YY format) derived from <date>.
Return type: String
Example
DTOC(Contact2->UDATE)
returns 10/24/99.

DTOS(<date>) Returns a character string (YYYYMMDD format) derived from <date>.
Return type: String
Example
DTOS(Contact2->UDATE)
returns 19991024.

MONTH(<date>) Returns that numeric month for the specified <date>.
Return type: Numeric
example:
Example
MONTH(Contact2->UDATE)
returns 2.

STOD(<string>) Converts a <string> value into a date value. <string> should be in the
format YYYYMMDD.
Return type: Date
Example
STOD("20000121")
returns 1/21/2000.

WDATE(<date>,
<format>)

Returns the <date> formatted in variety of ways, based on the optional
parameter <format>.

 <format>

 0 mm, dd, yy Jan 21, 00

 1 ddd, mmm dd, yy Thu, Jan 21, 00

 2 mmm dd Jan 21

 3 Long date style Thursday, Jan 21, 2000

 The Long date style format 3 is taken from the Windows Regional Settings.
Return type: String
Example
WDATE(Contact2->UDATE, 1)
returns Thu, Jan 21, 00.

Integrating With GoldMine

374

YEAR(<date>) Returns the numeric year value of <date>.
Return type: Numeric
Example
YEAR(Contact2->UDATE)
returns 2000.

Numeric Functions
CEILING(<number>) Returns the nearest integer that is greater than or equal to the numeric

expression.
Return type: Numeric
Example
CEILING(3.1)
returns 4.

COUNTER(<string>,
<inc>, <start>,
<action>)

Returns a sequence of consecutive numbers each time the expression is
evaluated. Each of the parameters is described below.
<name>
This counter must be unique, and can be a maximum of 10 characters.
<inc>
Each evaluation of the function increments the counter by the <inc> value.
<start> and <action>
Optional parameters
When <action>is 1, the <start> value is used to reset the counter. The
counter is deleted when <action>is 2.
COUNTER works similarly to the SEQUENCE function. The key difference
is that COUNTER stores the count value between GoldMine sessions, and
it is shared by all GoldMine users. The COUNTER function updates a
database counter, so COUNTER is much slower than SEQUENCE, which
updates a memory counter. The SEQUENCE counter is local to the
operation, and its count is lost at the end of the operation.
GoldMine can track an unlimited number of uniquely named counters. The
counter values are stored in the LOOKUP table.
Return type: Numeric
Example
COUNTER("InvoiceNo", 1, 1000)
returns 1000.

FLOOR(<number>) Returns the nearest integer that is less than or equal to the numeric
expression
Return type: Numeric
Example
FLOOR(2.8)
returns 2.

INT(<number>) Returns the integer part of a number without rounding.
Return type: Numeric
Example
INT(123.95)
returns 123.

Integrating With GoldMine

 375

RANDOM(<range>) Returns a random number.
<range> can be any number between 1 and 32,761. The returned random
number will range between zero and <range>, not including the range limit.
If not specified, the <range> parameter defaults to 32,761. You can
generate random numbers up to two billion with the expression
random(32761) * random(32761).
Return type: Numeric
Example
RANDOM(10)
Returns a number between 0–9.

SEQUENCE(<start>,
<inc>)

Returns a sequence of consecutive numbers each time the expression is
evaluated. When the expression is first evaluated, the <start> parameter
starts the counter. Each subsequent evaluation of the function increments
the counter by the <inc> value. The SEQUENCE counter is local to the
operation, and its count is lost at the end of the operation.
Return type: Numeric
Example 1
SEQUENCE(1000,10)
returns 1010.
Example 2
SEQUENCE(1000,10)
SEQUENCE(1000,10)
returns 1020.

VAL(<string>) Converts <string> to a numeric value.
Return type: Numeric
Example
VAL("123.45")
returns 123.45.

Integrating With GoldMine

376

Miscellaneous Functions
RECCOUNT() Returns the number of records in Contact1. (May be time-consuming on

large SQL tables.)
Return type: Numeric
Example
RECCOUNT()
returns 35671

RECNO() Returns the current record number (Xbase) or RecID (SQL) for the active
Contact1 record.
Return type: Numeric
Example
RECNO()
returns 351.

RECNOCOUNT() Returns the current record number and total records. This function is not
available for SQL tables.
Return type: String
Example
RECNOCOUNT()
returns 236 of 2204.

TIME() Returns the current time.
Return type: Time
Example
TIME()
returns 14:56:22.

 377

Xbase Database Structures

This chapter is provided for programmers who want to integrate their programs
with GoldMine Xbase format database structures.

Third-party developers are encouraged to integrate their products with GoldMine,
thereby enhancing both products. If you design a commercial program that works
with GoldMine, please contact FrontRange Solutions so we can include your
program in our Enhancement Guide.

This chapter describes the file organization and structures of GoldMine databases in
an Xbase format. Each database file is listed separately and includes its associated
index files, database structure, and special notes. For information about working
with GoldMine databases in an SQL format, see Chapter 7 on page 393. The
following pages describe the database structures of most GoldMine .DBF files. This
chapter does not include a discussion of every database. Security and system
database files are not included in this section. You should not interface with these
files. For an in-depth discussion on interfacing with GoldMine, visit the
Public.GoldMine.Programming newsgroup, which you can access directly from the
FrontRange Solutions Web site at http://www.frontrange.com.

Most GoldMine files are stored in the GOLDMINE\GMBASE directory. These files
include most database and index files. The contact sets (CONT*.*) are stored in a
separate directory to allow GoldMine to handle multiple contact sets.

If you will be developing an application to read and write to the GoldMine databases,
we recommend that you use Dynamic Data Exchange (DDE) as described in “Dynamic
Data Exchange (DDE) on page 27 or the functions contained within GMXS32.DLL, as

http://www.frontrange.com/

Integrating With GoldMine

378

described in “Using GMXS32.DLL for Database Access and Sync Log Updates” on page
89. If you choose to write directly to our files without using DDE, you must be aware of
the field/index structure and synchronization methodology used by GoldMine to
ensure full compatibility.

To view how GoldMine uses RECTYPEs for various purposes, create a contact set,
create sample contacts, and then create sample activities, and so on. Place obvious
values in each of the fields. Use a database viewing utility, such as BR4, MS-Access,
or Excel to view the sample records.

Do not view your live contact database with an external application. Do not edit
GoldMine fields with an external application.

CAL.DBF
Directory: GMBASE

Description: Calendar file—contains a record for each scheduled activity. The different record
types are distinguished by the contents of the RECTYPE field. Different RECTYPEs
may use each field for a different purpose.

Index File: CAL.MDX

CAL Indexes
Name Key
Cal Rectype+userID+DTOS(onDate)+onTime

Calcont AccountNo+rectype+DTOS(onDate)+onTime

Caldate UserID+DTOS(onDate)+onTime

Calprob Rectype+userID+Str(999-duration,3)

Calalarm AlarmFlag+userID+DTOS(ALARMDATE)+alarmTime

Calrlink lopRecID+RECTYPE+DTOS(ONDATE)+ONTIME

Calrecid recId

CAL Structure
Field Name Type Len Description
USERID String 8 User Name

ACCOUNTNO String 20 Account Number of linked contact

ONDATE Date 8 Activity date

ONTIME String 5 Activity Time

ENDDATE Date 8 Ending Date of Scheduled Activity

ALARMFLAG String 1 Alarm Flag

ALARMTIME String 5 Alarm Time

ALARMDATE Date 8 Alarm Date

ACTVCODE String 3 Activity Code

Integrating With GoldMine

 379

Field Name Type Len Description
RSVP String 1 RSVP Notification

DURATION Integer 3 Duration/Probability

RECTYPE String 1 Record Type*

ACONFIRM String 3 Meeting Confirmation

APPTUSER String 10 Meeting Confirmation User

STATUS String 4 First character is flag, second char =1 if notes exist

DIRCODE String 10 DirCode of the current contact file

NUMBER1 Integer 11 Sales Potential

NUMBER2 Integer 8 Units of a Forecasted Sale

COMPANY String 60 Company/Contact Name

REF String 80 Reference

NOTES Memo 1 Notes

LINKRECID String 15 Linked Record ID

ldoCrecid String 15 Reserved for future use

LOPRECID String 15 Linked Opportunity Manager Record ID

CREATEBY String 8 Created by User

CREATEON Date 8 Creation Date

CREATEAT String 6 Creation Time

LASTUSER String 8 Last Modified By

LASTDATE Date 8 Last Modified Date

LASTTIME String 5 Last Modified Time

RECID String 15 Record ID

CONTACT1.DBF
Directory: COMMON

Description: Contact file—contains the main fields of contact records

Index File: CONTACT1.MDX

CONTACT1 Indexes
Name Key
Contacc AccountNo

* The RECTYPE field contains the Calendar’s activity type. The following values are possible contents of RECTYPE:

A Appointment F Literature fulfillment S Sales potential
C Call Back M Message T Next action
D To-do O Other
E Event Q Queued e-mail

Integrating With GoldMine

380

Name Key
Contcomp Upper(company)+Substr(accountNo,10,4)

Contname Upper(contact)+Substr(accountNo,10,4)

Contzip zip+Substr(accountNo,10,4)

Contcity Upper(city)+Substr(accountNo,10,4)

Contkey1 Upper(key1)+Substr(accountNo,10,4)

Contkey2 Upper(key2)+Substr(accountNo,10,4)

Contkey3 Upper(key3)+Substr(accountNo,10,4)

Contkey4 Upper(key4)+Substr(accountNo,10,4)

Contkey5 Upper(key5)+Substr(accountNo,10,4)

Contlast Upper(lastName)+Substr(accountNo,10,4)

CONTSTAT Upper(STATE+CITY)+SUBSTR(ACCOUNTNO,10,4)

CONTCNTY UPPER(COUNTRY+STATE)+SUBTR(ACCOUNTNO,10,4)

Contphon phone1+Substr(accountNo,10,4)

Cn1Recid recid

CONTACT1 Relations
Related File->Field Contact1 Field
Contact2->AccountNo Contact1->AccountNo

ContHist->AccountNo Contact1->AccountNo

ContSupp->AccountNo Contact1->AccountNo

Cal->AccountNo Contact1->AccountNo

CONTACT1 Structure
Field Name Type Len Description
ACCOUNTNO String 20 Account Number*

COMPANY String 40 Company Name

CONTACT String 40 Contact Name

LASTNAME String 15 Contact’s Last Name

DEPARTMENT String 35 Department

TITLE String 35 Contact Title

SECR String 20 Secretary

PHONE1 String 25 Phone 1

PHONE2 String 25 Phone 2

* The ACCOUNTNO field contains the following information:

Positions Value
1–6 Date in YYMMDD format

7–11 Seconds since midnight
12–17 Randomly generated
18–20 First three characters of the contact or company name

Integrating With GoldMine

 381

Field Name Type Len Description
PHONE3 String 25 Phone 3

FAX String 25 Fax

EXT1 String 6 Phone Extension 1

EXT2 String 6 Phone Extension 2

EXT3 String 6 FAX Extension used as EXT3 to maintain compatibility with
previous versions

EXT4 String 6 Phone Extension 3

ADDRESS1 String 40 Address 1

ADDRESS2 String 40 Address 2

ADDRESS3 String 40 Address 3

CITY String 30 City

STATE String 20 State

ZIP String 10 Zip Code

COUNTRY String 20 Country

DEAR String 20 Dear (Salutation)

SOURCE String 20 Source (Lead)

KEY1 String 20 Key 1

KEY2 String 20 Key 2

KEY3 String 20 Key 3

KEY4 String 20 Key 4

KEY5 String 20 Key 5

STATUS String 3 Internal Status**

NOTES Memo Notes

MERGECODES String 20 Merge Codes for primary contact

CREATEBY String 8 Creation User

CREATEON Date 8 Creation Date

CREATEAT String 5 Creation Time

OWNER String 8 Record Owner

LASTUSER String 8 Last Modified By

LASTDATE Date 8 Last Modified Date

LASTTIME String 6 Last Modified Time

RECID String 15 Record ID

** Position 1 of the Internal Status field keeps track of the type of phone number for the contact. If the first character is U, the phone numbers
are formatted for USA-style phone numbers: (999)999-9999.
 Position 2 indicates the curtain level (0=none, 1=partial, 2=full)
 Position 3 indicates a record alert is present if the value is 1.

Integrating With GoldMine

382

CONTACT2.DBF
Directory: COMMON

Description: Contact file—contains the additional fields of contact records. Each complete
contact record has a record in this file. User-defined field data is stored in this file.

Index File: CONTACT2.MDX

CONTACT2 Index
Name Key
Contact2 accountNo

Cn2Recid recId

 CONTACT2 Structure
Field Name Type Len Description
ACCOUNTNO String 20 Account Number

CALLBACKON Date 8 Call Back Date

CALLBACKAT String 8 Call Back Time (unused compatibility field)

CALLBKFREQ Smallint 3 Call Back Frequency

LASTCONTON Date 8 Last Contact Date

LASTCONTAT String 8 Last Contact Time

LASTATMPON Date 8 Last Attempt Date

LASTATMPAT String 8 Last Attempt Time

MEETDATEON Date 8 Meeting Date

MEETTIMEAT String 8 Meeting Time

COMMENTS Date 65 Comments

PREVRESULT String 65 Previous Results

NEXTACTION String 65 Next Action

ACTIONON Date 8 Next Action Date

CLOSEDATE Date 8 Expected Close Date

USERDEF01 String 10 User Defined 1

USERDEF02 String 10 User Defined 2

USERDEF03 String 10 User Defined 3

USERDEF04 String 10 User Defined 4

USERDEF05 String 10 User Defined 5

USERDEF06 String 10 User Defined 6

USERDEF07 String 10 User Defined 7

USERDEF08 String 10 User Defined 8

USERDEF09 String 10 User Defined 9

USERDEF10 String 10 User Defined 10

Integrating With GoldMine

 383

Field Name Type Len Description
RECID String 15 Record ID

CONTGRPS.DBF
Directory: COMMON

Description: Groups file—the CONTGRPS file is used for both the group header, which defines
each group, and members for each group.

Index File: CONTGRPS.MDX

CONTGRPS Indexes
Name Key

GroupNo UPPER(userID+code)

GroupAcc accountno+userID

GrpRecID recId

CONTGRPS Structure (header records)
Field Name

Type Len Description

USERID String 15 Group user

CODE String 8 Group code

ACCOUNTNO String 20 Header info*

REF String 24 Group reference

RECID String 15 Record ID/Group number

CONTGRPS Structure (member records)
Field Name Type Len Description
USERID String 15 Group number (from group header)

CODE String 8 Member sort value

ACCOUNTNO String 20 Linked contact accountno

REF String 24 Member reference

RECID String 15 Record ID

CONTHIST.DBF
Directory: COMMON

* The ACCOUNTNO field contains the following information when the CONTGRPS record is a group header record:

Positions Value
1–8 “*M”

15–20 Total members in group
 The next available group number is stored in the CODE field in the first physical record in CONTGRPS.DBF.

Integrating With GoldMine

384

Description: Contact history file—contains a record for each completed activity

Index File: CONTHIST.MDX

CONTHIST Indexes
Name Key
ContHist accountNo+DTOS(onDate)+RECID

ContHusr USERID+SRECTYPE+DTOS(ONDATE)+RECID

CNHRLink lopRecId+DTOS(ONDATE)

CnHRecid recId

CONTHIST Structure
Field Name Type Len Description
USERID String 8 User

ACCOUNTNO String 20 Account No.

SRECTYPE String 1 First character of RecType

RECTYPE String 10 Record Type*

ONDATE Date 8 Action Date

ONTIME String 5 Action Time

ACTVCODE String 3 Activity Code

RESULTCODE String 3 Result Code

STATUS String 2 First character is flag, second character =1 if notes exist

DURATION String 8 Duration

UNITS String 8 Units of a Forecasted Sale

REF String 80 Reference

NOTES Memo 1 Notes

LINKRECID String 15 Linked Record ID

LOPRECID String 15 Linked Opp. Mgr. Record

CREATEBY String 8 Creation User

CREATEON Date 8 Creation Date

CREATEAT String 6 Creation Time

LASTUSER String 8 Last Modified By

LASTDATE Date 8 Last Modified Date

LASTTIME String 6 Last Modified Time

* The RECTYPE field contains the completed activity’s type. The following values are possible contents of RECTYPE:

A Appointment M Sent message CI Incoming call
C Phone call O Other CM Returned message
D To-do S Sale CO Outgoing call
E Event T Next action MG E-mail message
F Literature fulfillment U Unknown MI Received e-mail
L Form CC Call back MO Sent e-mail

Integrating With GoldMine

 385

Field Name Type Len Description
RECID String 15 Record ID

CONTSUPP.DBF
Directory: COMMON

Description: Supplementary contact set—contains a record for each additional contact
record, referral and profile record. The different record types are distinguished
by the contents of the RECTYPE field. Different RECTYPEs may use each field
for a different purpose.

Index File: CONTSUPP.MDX

CONTSUPP Indexes
Name Key
ContSupp accountNo+recType+UPPER(contact)

Contspfd UPPER(RECTYPE+CONTACT+CONTSUPREF)

Cnsrecid recId

CONTSUP Structure
Field Name Type Len Description
ACCOUNTNO String 20 Account No.

RECTYPE String 1 Record Type*

CONTACT String 30 Contact Name/Profile

TITLE String 35 Contact Title/Referral’s Account Number

CONTSUPREF String 35 Reference

DEAR String 20 Dear (Salutation)

PHONE String 20 Phone

EXT String 6 Phone Extension

FAX String 20 FAX number

LINKACCT String 20 Linked Account

NOTES Memo 1 Notes

ADDRESS1 String 40 Additional Contact Address 1

ADDRESS2 String 40 Additional Contact Address 2

ADDRESS3 String 40 Additional Contact Address 3

* The RECTYPE field contains the record type. The following values are possible contents of RECTYPE:

C Additional contact record O Organizational chart
E Automated Process attached event P Profile record/extended profile record
H Extended profile header R Referral record
L Linked document

 The RECTYPE value H can be linked to records with the RECTYPE value P. Assigning extended information settings to a profile (assigned to
a tab, or extended fields used) creates an H record type to store the settings. The profile record stores a character string in the Phone field that matches
the H record’s ACCOUNTNO field.

Integrating With GoldMine

386

Field Name Type Len Description
CITY String 30 Additional Contact City

STATE String 20 Additional Contact State

ZIP String 10 Additional Contact Zip

COUNTRY String 20 Additional Contact Country

MERGECODES String 20 Merge Codes

STATUS String 4 First character is flag, second char =1 if notes exist

LINKEDDOC Memo 10 Linked Document

LASTUSER String 8 Last Modified By

LASTDATE Date 8 Last Modified Date

LASTTIME String 5 Last Modified Time

RECID String 15 Record ID

INFOMINE.DBF
Directory: GMBASE

Description: InfoCenter file—stores all data for the InfoCenter

Index File: INFOMINE.MDX

INFOMINE Indexes
Name Key
infomine UPPER(rectype+LEFT(TSECTION,80)+LEFT(TOPIC,10)

infosort sortKey

infotran recType+recID

infrecid recId

INFOMINE Structure
Field Name Type Len Description
ACCOUNTNO String 20 Account No.

CREATEBY String 8 Creation User

RECTYPE String 10 Record Type

SORTKEY String 20 Sort Key

TSECTION String 100 Section

TOPIC String 80 Topic

KEYWORDS String 80 Keywords

OPTIONS String 10 Options

OPTIONS1 String 20 Options1

OPTIONS2 String 20 Options2

Integrating With GoldMine

 387

Field Name Type Len Description
LINKEDDOC Memo 1 Linked Document

NOTES Memo 1 Notes

USERREAD String 8 Read Access

USERWRITE String 8 Write Access

LASTUSER String 8 Last Modified By

LASTDATE Date 8 Last Modified Date

LASTTIME String 5 Last Modified Time

RECID String 15 Record ID

LOOKUP.DBF
Directory: GMBASE

Description: Lookup file—contains a record of each defined look-up entry

Index File: LOOKUP.MDX

LOOKUP Indexes
Name Key
Lookup UPPER(FIELDName+entry)

lkurecid recId

LOOKUP Structure
Field Name Type Len Description
FIELDNAME String 11 Field Name

LOOKUPSUPP String 10 Lookup Options

ENTRY String 40 Description

RECID String 15 Record ID

Integrating With GoldMine

388

MAILBOX.DBF
Directory: GMBASE

Description: E-mail Center mailbox file—stores all GoldMine e-mail

Index File: MAILBOX.MDX

MAILBOX Indexes
Name Key
mboxlink LinkRecId

mboxuser userId+folder+FOLDER2+DTOS(MAILDATE)

mbxrecid recId

MAILBOX Structure
Field Name Type Len Description
LINKRECID String 15 Linked Record ID

FLAGS String 8 Flags*

USERID String 8 User Name

FOLDER String 20 Folder**

FOLDER2 String 20 Subfolder

ACCOUNTNO String 20 Account No.

CREATEON Date 8 Creation Date

MAILSIZE String 8 Mail Size

MAILDATE Date Mail Date

MAILTIME String 8 Mail Time

MAILREF String 100 Reference

RFC822 Memo 1 Entire Mail Message

RECID String 15 Record ID

* The FLAGS field is a String type, but actually stores a number. When the number is converted to binary, the following rules apply:

Bit On Off
1 Read Not Read
2 In History Not in History
3 Outbound Inbound
4 Attachments No Attachments

** The FOLDER field contains the name of the folder in which mail is stored. GoldMine uses the following predefined folders:

X-GM-INBOX -Inbox
X-GM-OUTBOX -Outbox
X-GM-TEMPLATES -Templates

Integrating With GoldMine

 389

OPMGR.DBF
Directory: GMBASE

Description: Opportunity Manager file—stores all data maintained in the Opportunity Manager

Index File: OPMGR.MDX

OPMGR Indexes
Name Key
OpMgr UPPER(recType+userID+stage)

OpId opId+recType

OPACCNO ACCOUNTNO+RECTYPE+OPID

OpRecID recID

OPMGR Structure
Field Name Type Len Description
OPID String 15 Opportunity ID

RECTYPE String 3 Record Type*

ACCOUNTNO String 20 Account No.

USERID String 8 User Name

FLAGS String 10 Flags

COMPANY String 40 Company

CONTACT String 40 Contact

NAME String 50 Name

STATUS String 50 Status

CYCLE String 50 Cycle

STAGE String 30 Stage

SOURCE String 30 Source

F1 String 20

F2 String 20

F3 String 10

STARTDATE Date 8 Start Date

CLOSEDDATE Date 8 Close Date

CLOSEBY Date 8 Close by

FORAMT Float 10 For Amount

* The following OpMgr rectypes are valid, where x represents O for opportunity records, or P for project records:

O Opportunity header record xT Team member
P Project header record xI Issue
xC Contact xF Field
xP Competitor xK Task

Integrating With GoldMine

390

Field Name Type Len Description
FORPROB Integer 4 Probability

CLOSEAMT Float 10 Close Amount

Notes Memo 1 Notes

RECID String 15 Record ID

PERPHONE.DBF
Directory: GMBASE

Description: Personal Rolodex file—contains a record of each entry in the user’s Rolodex

Index File: PERPHONE.MDX

PERPHONE Indexes
Name Key
Perphone UPPER(recType+userID+contact)

pphrecid recId

PERPHONE Structure
Field Name Type Len Description
RECTYPE String 1 Record Type

USERID String 8 User Name

STATUS String 2 Status

CONTACT String 30 Contact Name

PHONE1 String 16 Phone Number

RECID String 15 Record ID

RESITEMS.DBF
Directory: GMBASE

Description: Resources file—stores data regarding equipment, facilities, and other resources
that you can schedule from the Resources’ Master File.

Index File: RESITEMS.MDX

RESITEMS Indexes
Name Key
resource name

rscrecid recid

Integrating With GoldMine

 391

RESITEMS Structure
Field Name Type Len Description
NAME String 8 Name

CODE String 10 Code

RESDESC String 40 Description

CUSTODIAN String 8 Custodian

NOTES Memo 1 Notes

RECID String 15 Record ID

SPFILES.DBF
Directory: GMBASE

Description: Contact files directory—contains a record for each GoldMine
contact set

Index File: SPFILES.MDX

SPFILES Index
Name Key
Spfiles UPPER(dirPath)

Sflcode dirCode

sflrecid recId

SPFILES Structure
Field Name Type Len Description
DIRNAME String 35 Contact file description

DIRPATH String 100 Contact file path

USERID String 8 Contact file user

DIRCODE String 10 Contact Set Code

DBPASSWORD String 36 Database Password

DRIVER String 25 Database Driver

RECID String 15 Record ID

 393

SQL Database Structures

Third-party developers are encouraged to integrate their products with GoldMine,
thereby enhancing both products. If you design a commercial program that works
with GoldMine, please contact FrontRange Solutions so we can include your
program in our Enhancement Guide.

This chapter describes the file organization and structures of Goldmine SQL format
databases in an SQL format. Each database file is listed separately and includes its
associated index files, database structure, and special notes. For information about
working with the GoldMine Xbase format database, see Chapter 6 on page 377. The
following pages describe the database structures of most GoldMine .DBF files. This
chapter does not include a discussion of every database. Security and system
database files are not included in this section. You should not interface with these
files. For an in-depth discussion on interfacing with GoldMine, visit the
Public.GoldMine.Programming newsgroup, which you can access directly from the
FrontRange Solutions Web site at www.frontrange.com.

If you will be developing an application to read and write to the GoldMine databases,
we recommend that you use Dynamic Data Exchange (DDE) as described in “Dynamic
Data Exchange (DDE) on page 27 or the functions contained within GMXS32.DLL, as
described in “Using GMXS32.DLL for Database Access and Sync Log Updates” on page
89. If you choose to write directly to our files without using DDE, you must be aware of
the field/index structure and synchronization methodology used by GoldMine to
ensure full compatibility.

http://www.frontrange.com/

Integrating With GoldMine

394

To view how GoldMine uses RECTYPEs for various purposes, create a contact set,
create sample contacts, and then create sample activities, and so on. Place obvious
values in each of the fields. Use a database viewing utility, such as MS-Access,
MSSQL Enterprise Manager, or isql to view the sample records.

Do not view your live contact database with an external application. Do not edit
GoldMine fields with an external application.

CAL Table
Description: Calendar file—contains a record for each scheduled activity. The different record

types are distinguished by the contents of the RECTYPE field. Different
RECTYPEs may use each field for a different purpose.

CAL Indexes
Name Index Tags Unique?
CALCONT ACCOUNTNO+RECTYPE+ONDATE+ONTIME+RECID No

CAL RECTYPE+USERID+ONDATE+ONTIME+RECID No

CALDATE USERID+ONDATE+ONTIME+RECID No

CALPROB RECTYPE+USERID No

CALALARM ALARMFLAG+USERID+ALARMDATE+ALARMTIME No

CALRLINK LOPRECID+RECTYPE+ONDATE+ONTIME No

CALRECID RECID Yes

CAL Structure
Field Name Type Len Description
USERID String 8 User Name

ACCOUNTNO String 20 Account Number of linked contact

ONDATE Date 8 Activity date

ONTIME String 5 Activity Time

ENDDATE Date 8 Ending Date of Scheduled Activity

ALARMFLAG String 1 Alarm Flag

ALARMTIME String 5 Alarm Time

ALARMDATE Date 8 Alarm Date

ACTVCODE String 3 Activity Code

RSVP String 1 RSVP Notification

Integrating With GoldMine

 395

Field Name Type Len Description
DURATION Integer 3 Duration/Probability

RECTYPE String 1 Record Type*

ACONFIRM String 3 Meeting Confirmation

APPTUSER String 10 Meeting Confirmation User

STATUS String 4 First character is flag, second char =1 if notes exist

DIRCODE String 10 DirCode of the current contact file

NUMBER1 Integer 11 Sales Potential

NUMBER2 Integer 8 Units of a Forecasted Sale

COMPANY String 60 Company/Contact Name

REF String 80 Reference

NOTES Memo 1 Notes

LINKRECID String 15 Linked Record ID

ldoCrecid String 15 Reserved for future use

LOPRECID String 15 Linked Opportunity Manager Record ID

CREATEBY String 8 Created by User

CREATEON Date 8 Creation Date

CREATEAT String 6 Creation Time

LASTUSER String 8 Last Modified By

LASTDATE Date 8 Last Modified Date

LASTTIME String 5 Last Modified Time

RECID String 15 Record ID

CONTACT1 Table
Description: Contact file—contains the main fields of contact records

CONTACT1 Indexes

Name Index Tags Unique?
CONTACC ACCOUNTNO No

CONTCNTY U_COUNTRY+U_STATE+ACCOUNTNO No

CONTCOMP U_COMPANY+ACCOUNTNO No

* The RECTYPE field contains the calendar’s activity type. The following values are possible
contents of RECTYPE:

A Appointment F Literature fulfillment S Sales potential
C Call Back M Message T Next action
D To-do O Other
E Event Q Queued e-mail

Integrating With GoldMine

396

Name Index Tags Unique?
CONTNAME U_CONTACT+ACCOUNTNO No

CONTZIP ZIP+ACCOUNTNO No

CONTCITY U_CITY+ACCOUNTNO No

CONTKEY1 U_KEY1+ACCOUNTNO No

CONTKEY2 U_KEY2+ACCOUNTNO No

CONTKEY3 U_KEY3+ACCOUNTNO No

CONTKEY4 U_KEY4+ACCOUNTNO No

CONTKEY5 U_KEY5+ACCOUNTNO No

CONTLAST U_LASTNAME+ACCOUNTNO No

CONTSTAT U_STATE+U_CITY+ACCOUNTNO No

CONTPHON PHONE1+ACCOUNTNO No

CN1RECID RECID Yes

 CONTACT1 Relations
Related File->Field Contact1 Field
Contact2->AccountNo Contact1->AccountNo

ContHist->AccountNo Contact1->AccountNo

ContSupp->AccountNo Contact1->AccountNo

Cal->AccountNo Contact1->AccountNo

CONTACT1 Structure
Field Name Type Len Description
ACCOUNTNO String 20 Account Number*

COMPANY String 40 Company Name

CONTACT String 40 Contact Name

LASTNAME String 15 Contact’s Last Name

DEPARTMENT String 35 Department

TITLE String 35 Contact Title

SECR String 20 Secretary

PHONE1 String 25 Phone 1

PHONE2 String 25 Phone 2

PHONE3 String 25 Phone 3

FAX String 25 Fax

* The ACCOUNTNO field contains the following information:

Positions Value
1–6 Date in YYMMDD format

7–11 Seconds since midnight
12–17 Randomly generated
18–20 First three characters of the contact or company name

Integrating With GoldMine

 397

Field Name Type Len Description
EXT1 String 6 Phone Extension 1

EXT2 String 6 Phone Extension 2

EXT3 String 6 FAX Extension used as EXT3 to maintain
compatibility with previous versions

EXT4 String 6 Phone Extension 3

ADDRESS1 String 40 Address 1

ADDRESS2 String 40 Address 2

ADDRESS3 String 40 Address 3

CITY String 30 City

STATE String 20 State

ZIP String 10 Zip Code

COUNTRY String 20 Country

DEAR String 20 Dear (Salutation)

SOURCE String 20 Source (Lead)

KEY1 String 20 Key 1

KEY2 String 20 Key 2

KEY3 String 20 Key 3

KEY4 String 20 Key 4

KEY5 String 20 Key 5

STATUS String 3 Internal Status**

NOTES Memo Notes

MERGECODES String 20 Merge Codes for primary contact

CREATEBY String 8 Creation User

CREATEON Date 8 Creation Date

CREATEAT String 5 Creation Time

OWNER String 8 Record Owner

LASTUSER String 8 Last Modified By

LASTDATE Date 8 Last Modified Date

LASTTIME String 6 Last Modified Time

U_COMPANY String 40 Upper-case shadow of Company field

U_CONTACT String 40 Upper-case shadow of Contact field

U_LASTNAME String 15 Upper-case shadow of contact’s Last Name field

U_CITY String 30 Upper-case shadow of City field

** Position 1 of the Internal Status field keeps track of the type of phone number for the contact. If the first character is U, the phone numbers
are formatted for USA-style phone numbers: (999)999-9999.
 Position 2 indicates the curtain level (0=none, 1=partial, 2=full).
 Position 3 indicates a record alert is present if the value is 1.

Integrating With GoldMine

398

Field Name Type Len Description
U_STATE String 20 Upper-case shadow of State field

U_COUNTRY String 20 Upper-case shadow of Country field

U_KEY1 String 20 Upper-case shadow of Key 1 field

U_KEY2 String 20 Upper-case shadow of Key 2 field

U_KEY3 String 20 Upper-case shadow of Key 3 field

U_KEY4 String 20 Upper-case shadow of Key 4 field

U_KEY5 String 20 Upper-case shadow of Key 5 field

RECID String 15 Record ID

CONTACT2 Table
Description: Contact file—contains the additional fields of contact records. Each complete

contact record has a record in this file. User-defined field data is stored in this file.

CONTACT2 Index
Name Index Tags Unique?
CONTACT2 ACCOUNTNO No

CN2RECID RECID Yes

CONTACT2 Structure
Field Name Type Len Description
ACCOUNTNO String 20 Account Number

CALLBACKON Date 8 Call Back Date

CALLBACKAT String 8 Call Back Time (unused compatibility field)

CALLBKFREQ Smallint 3 Call Back Frequency

LASTCONTON Date 8 Last Contact Date

LASTCONTAT String 8 Last Contact Time

LASTATMPON Date 8 Last Attempt Date

LASTATMPAT String 8 Last Attempt Time

MEETDATEON Date 8 Meeting Date

MEETTIMEAT String 8 Meeting Time

COMMENTS Date 65 Comments

PREVRESULT String 65 Previous Results

NEXTACTION String 65 Next Action

ACTIONON Date 8 Next Action Date

CLOSEDATE Date 8 Expected Close Date

USERDEF01 String 10 User Defined 1

USERDEF02 String 10 User Defined 2

Integrating With GoldMine

 399

Field Name Type Len Description
USERDEF03 String 10 User Defined 3

USERDEF04 String 10 User Defined 4

USERDEF05 String 10 User Defined 5

USERDEF06 String 10 User Defined 6

USERDEF07 String 10 User Defined 7

USERDEF08 String 10 User Defined 8

USERDEF09 String 10 User Defined 9

USERDEF10 String 10 User Defined 10

RECID String 15 Record ID

CONTGRPS Table
Description: Groups file—the CONTGRPS file is used for both the group header, which

defines each group, and members for each group.

CONTGRPS Indexes
Name Index Tags Unique?
GROUPNO USERID+U_CODE+RECID No

GROUPACC ACCOUNTNO+USERID No

GRPRECID RECID Yes

CONTGRPS Structure (header records)
Field Name Type Len Description
USERID String 15 Group user

CODE String 8 Group code

ACCOUNTNO String 20 Header info*

REF String 24 Group reference

U_CODE String 8 Upper-case shadow of member sort value

RECID String 15 Record ID/Group number

CONTGRPS Structure (member records)
Field Name Type Len Description
USERID String 15 Group number (from group header)

CODE String 8 Member sort value

ACCOUNTNO String 20 Linked contact accountno

* The ACCOUNTNO field contains the following information when the CONTGRPS record is a group header record:

Positions Value
1–8 “*M”

15–20 Total members in group
 The next available group number is stored in the CODE field in the first physical record in CONTGRPS.DBF.

Integrating With GoldMine

400

Field Name Type Len Description
REF String 24 Member reference

U_CODE String 8 Upper-case shadow of member sort value

RECID String 15 Record ID

CONTHIST Table
Description: Contact history file—contains a record for each completed activity

CONTHIST Indexes
Name Index Tags Unique?
CONTHIST ACCOUNTNO+ONDATE+RECID No

CONTHUSR USERID+SRECTYPE+ONDATE+RECID No

CNHRLINK LOPRECID+ONDATE No

CNHRECID RECID Yes

CONTHIST Structure
Field Name Type Len Description
USERID String 8 User

ACCOUNTNO String 20 Account No.

SRECTYPE String 1 First character of RecType

RECTYPE String 10 Record Type*

ONDATE Date 8 Action Date

ONTIME String 5 Action Time

ACTVCODE String 3 Activity Code

RESULTCODE String 3 Result Code

STATUS String 2 First character is flag, second character =1 if notes exist

DURATION String 8 Duration

UNITS String 8 Units of a Forecasted Sale

REF String 80 Reference

Field Name Type Len Description

NOTES Memo 1 Notes

LINKRECID String 15 Linked Record ID

LOPRECID String 15 Linked Opp. Mgr. Record

* The RECTYPE field contains the completed activity’s type. The following values are possible contents of RECTYPE:

A Appointment M Sent message CI Incoming call
C Phone call O Other CM Returned message
D To-do S Sale CO Outgoing call
E Event T Next action MG E-mail message
F Literature fulfillment U Unknown MI Received e-mail
L Form CC Call back MO Sent e-mail

Integrating With GoldMine

 401

Field Name Type Len Description
CREATEBY String 8 Creation User

CREATEON Date 8 Creation Date

CREATEAT String 6 Creation Time

LASTUSER String 8 Last Modified By

LASTDATE Date 8 Last Modified Date

LASTTIME String 6 Last Modified Time

RECID String 15 Record ID

CONTSUPP Table
Description: Supplementary contact set—contains a record for each additional contact record,

referral and profile record. The different record types are distinguished by the
contents of the RECTYPE field. Different RECTYPEs may use each field for a
different purpose.

CONTSUPP Indexes
Name Index Tags Unique?
CONTSUPP ACCOUNTNO+RECTYPE+U_CONTACT+RECID No

CONTSPFD RECTYPE+U_CONTACT+U_CONTSUPREF No

CNSRECID RECID Yes

CONTSUPP Structure
Field Name Type Len Description
ACCOUNTNO String 20 Account No.

RECTYPE String 1 Record Type*

CONTACT String 30 Contact Name/Profile

TITLE String 35 Contact Title/Referral’s Account Number

CONTSUPREF String 35 Reference

DEAR String 20 Dear (Salutation)

PHONE String 20 Phone

EXT String 6 Phone Extension

FAX String 20 FAX number

LINKACCT String 20 Linked Account

* The RECTYPE field contains the record type. The following values are possible contents of RECTYPE:

C Additional contact record O Organizational chart
E Automated Process attached event P Profile record/extended profile record
H Extended profile header R Referral record
L Linked document

 The RECTYPE value H can be linked to records with the RECTYPE value P. Assigning extended information settings to a profile (assigned to
a tab or extended fields used) creates an H record type to store the settings. The profile record stores a character string in the Phone field that matches
the H record’s ACCOUNTNO field.

Integrating With GoldMine

402

Field Name Type Len Description
NOTES Memo 1 Notes

ADDRESS1 String 40 Additional Contact Address 1

ADDRESS2 String 40 Additional Contact Address 2

ADDRESS3 String 40 Additional Contact Address 3

CITY String 30 Additional Contact City

STATE String 20 Additional Contact State

ZIP String 10 Additional Contact Zip

COUNTRY String 20 Additional Contact Country

MERGECODES String 20 Merge Codes

STATUS String 4 First character is flag, second char =1 if notes exist

LINKEDDOC Memo 10 Linked Document

LASTUSER String 8 Last Modified By

LASTDATE Date 8 Last Modified Date

LASTTIME String 5 Last Modified Time

U_CONTACT String 30 Upper-case shadow of Contact field

U_CONTSUPREF String 35 Upper-case shadow of Reference field

RECID String 15 Record ID

INFOMINE Table
Description: InfoCenter file—stores all data for the InfoCenter

INFOMINE Indexes
Name Index Tags Unique?
INFOMINE RECTYPE+U_TSECTION+U_TOPIC No

INFOSORT SORTKEY No

INFOTRAN RECTYPE+RECID No

INFRECID RECID Yes

INFOMINE Structure
Field Name Type Len Description
ACCOUNTNO String 20 Account No.

CREATEBY String 8 Creation User

RECTYPE String 10 Record Type

SORTKEY String 20 Sort Key

TSECTION String 100 Section

TOPIC String 80 Topic

KEYWORDS String 80 Keywords

Integrating With GoldMine

 403

Field Name Type Len Description
OPTIONS String 10 Options

OPTIONS1 String 20 Options1

OPTIONS2 String 20 Options2

LINKEDDOC Memo 1 Linked Document

NOTES Memo 1 Notes

USERREAD String 8 Read Access

USERWRITE String 8 Write Access

LASTUSER String 8 Last Modified By

LASTDATE Date 8 Last Modified Date

LASTTIME String 5 Last Modified Time

U_TSECTION String 100 Upper-case shadow of Section field

U_TOPIC String 80 Upper-case shadow of Topic field

RECID String 15 Record ID

LOOKUP Table
Description: Lookup file—contains a record of each defined look-up entry

LOOKUP Indexes
Name Index Tags Unique?
LOOKUP FIELDNAME+U_ENTRY No

LKURECID RECID Yes

LOOKUP Structure
Field Name Type Len Description
FIELDNAME String 11 Field Name

LOOKUPSUPP String 10 Lookup Options

ENTRY String 40 Description

U_ENTRY String 40 Upper-case shadow of Description field

RECID String 15 Record ID

MAILBOX Table
Description: E-mail Center mailbox file—stores all GoldMine e-mail

MAILBOX Indexes
Name Index Tags Unique?
MBOXLINK LINKRECID No

MBOXUSER USERID+FOLDER+FOLDER2+MAILDATE No

Integrating With GoldMine

404

Name Index Tags Unique?
MBXRECID RECID Yes

MAILBOX Structure
Field Name Type Len Description
LINKRECID String 15 Linked Record ID
FLAGS String 8 Flags*
USERID String 8 User Name
FOLDER String 20 Folder**
FOLDER2 String 20 Subfolder
ACCOUNTNO String 20 Account No.
CREATEON Date 8 Creation Date
MAILSIZE String 8 Mail Size
MAILDATE Date Mail Date
MAILTIME String 8 Mail Time
MAILREF String 100 Reference
RFC822 Memo 1 Entire Mail Message
RECID String 15 Record ID

OPMGR Table
Description: Opportunity Manager file—stores all data maintained in the Opportunity Manager

OPMGR Indexes
Name Index Tags Unique?
OPMGR RECTYPE+USERID+U_STAGE No

OPID OPID+RECTYPE No

OPACCNO ACCOUNTNO+RECTYPE+OPID No

OPRECID RECID Yes

OPMGR Structure
Field Name Type Len Description
OPID String 15 Opportunity ID

RECTYPE String 3 Record Type*

* The FLAGS field is a String type, but actually stores a number. When the number is converted to binary, the following rules apply:

Bit On Off
1 Read Not Read
2 In History Not in History
3 Outbound Inbound
4 Attachments No Attachments

** The FOLDER field contains the name of the folder in which mail is stored. GoldMine uses the following predefined folders:

X-GM-INBOX -Inbox
X-GM-OUTBOX -Outbox
X-GM-TEMPLATES -Templates

* The following OpMgr rectypes are valid, where x represents O for opportunity records, or P for project records:

Integrating With GoldMine

 405

Field Name Type Len Description
ACCOUNTNO String 20 Account No.

USERID String 8 User Name

FLAGS String 10 Flags

COMPANY String 40 Company

CONTACT String 40 Contact

NAME String 50 Name

STATUS String 50 Status

CYCLE String 50 Cycle

STAGE String 30 Stage

SOURCE String 30 Source

F1 String 20

F2 String 20

F3 String 10

STARTDATE Date 8 Start Date

CLOSEDDATE Date 8 Close Date

CLOSEBY Date 8 Close by

FORAMT Float 10 For Amount

FORPROB Integer 4 Probability

CLOSEAMT Float 10 Close Amount

Notes Memo 1 Notes

U_STAGE String 30 Upper-case shadow of Stage field

RECID String 15 Record ID

PERPHONE Table
Description: Personal Rolodex file—contains a record of each entry in the user’s Rolodex

PERPHONE Indexes
Name Index Tags Unique?
PERPHONE RECTYPE+USERID+U_CONTACT No

PPHRECID RECID Yes

O Opportunity header record xT Team member
P Project header record xI Issue
xC Contact xF Field
xP Competitor xK Task

Integrating With GoldMine

406

PERPHONE Structure
Field Name Type Len Description
RECTYPE String 1 Record Type

USERID String 8 User Name

STATUS String 2 Status

CONTACT String 30 Contact Name

PHONE1 String 16 Phone Number

U_CONTACT String 30 Upper-case shadow of Contact field

RECID String 15 Record ID

RESITEMS Table
Description: Resources file—stores data regarding equipment, facilities, and other resources

that you can schedule from the Resources’ Master File.

RESITEMS Indexes
Name Index Tags Unique?
RESITEMS NAME No

RSRECID RECID Yes

RESITEMS Structure
Field Name Type Len Description
NAME String 8 Name

CODE String 10 Code

RESDESC String 40 Description

CUSTODIAN String 8 Custodian

NOTES Memo 1 Notes

RECID String 15 Record ID

SPFILES Table
Description: Contact files directory—contains a record for each GoldMine contact set

SPFILES Index
Name Index Tags Unique?
SFLCODE DIRCODE No

SFLRECID RECID Yes

SPFILES U_DIRPATH No

Integrating With GoldMine

 407

SPFILES Structure
Field Name Type Len Description
DIRNAME String 35 Contact file description

DIRPATH String 100 Contact file path

USERID String 8 Contact file user

DIRCODE String 10 Contact Set Code

DBPASSWORD String 36 Database Password

DRIVER String 25 Database Driver

U_DIRPATH String 100 Upper-case shadow of Contact file path

RECID String 15 Record ID

 409

Appendix:
Code Examples

This appendix contains code examples for the GMXS32.DLL and GMXMLAPI.DLL
in the following programming languages:

• C++

• Visual Basic

• Delphi

GMXS32.DLL Code Examples
This section shows sample codes for C++, Visual Basic, and Delphi.

C++ Examples
The following C++ files have been provided as part of this package:

GM5S32.H: C Header file containing all of the GMXS32.DLL function prototypes.

Function prototypes
//////////////////////////
//
// gm5s32.h

Integrating With GoldMine

410

// Purpose : GM5S32.DLL interface

#ifndef __GM5S32_H
#define __GM5S32_H
#ifdef __cplusplus
 extern "C" {
#endif

// licensing structure passed to GMW_GetLicenseInfo
typedef struct
 {
 char szLicensee[60]; // licensee name
 char szLicNo[20]; // master serial number
 char szSiteName[20]; // undocked site name
 long iLicUsers; // licensed users
 long iSQLUsers; // licensed SQL users
 long iGSSites; // license GoldSync sites
 long isDemo; // is demo install
 long isServerLic; // is primary license ('D' or 'E')
 long isRemoteLic; // is remote license ('U' or 'S')
 long isUSALicense; // is USA license (1=US,128/32
 // bit, 0=nonUS, 32-bit only)
 long iDLLVersion; // the DLL version (400822)

 long iReserved1;
 long iReserved2;
 long szReserved[100];

} GMW_LicInfo;

// DLL initialization functions
int _stdcall GMW_LoadBDE(char *szSysDir, char *szGoldDir, char
*szCommonDir, char *szUser =0, char *szPass =0);
int _stdcall GMW_UnloadBDE();

int _stdcall GMW_SetSQLUserPass(char *szUserName, char *szPassword
);

int _stdcall GMW_GetLicenseInfo(GMW_LicInfo *pLic);

long _stdcall GMW_IsUserGroupMember(char *szGroup, char *szUserID);

// DataStream functions

// DBF workarea functions
long _stdcall GMW_DB_Open(char *szTableName);

long _stdcall GMW_DB_Close(long pArea);

long _stdcall GMW_DB_Append(long pArea, char* szRecID);

long _stdcall GMW_DB_Replace(long pArea, char* szField, char
*szData, int iAddTo);

long _stdcall GMW_DB_Delete(long pArea);

Integrating With GoldMine

 411

long _stdcall GMW_DB_Unlock(long pArea);

long _stdcall GMW_DB_Read(long pArea, char *szField, char *szBuf,
int iBufSize);

long _stdcall GMW_DB_Top (long pArea);

long _stdcall GMW_DB_Bottom(long pArea);

long _stdcall GMW_DB_SetOrder(long pArea, char *szTag);

long _stdcall GMW_DB_Seek(long pArea, char* szParam);

long _stdcall GMW_DB_Skip(long pArea, int nSkip =1);

long _stdcall GMW_DB_Goto(long pArea, char *szRecNo);

long _stdcall GMW_DB_Move(long pArea, char *szCommand, char* szParam
);

long _stdcall GMW_DB_Search(long pArea, char *szExpr, char *szRecID
);

long _stdcall GMW_DB_Filter(long pArea, char *szFilterExpr);

long _stdcall GMW_DB_Range(long pArea, char *szMin, char* szMax,
char* szTag);

long _stdcall GMW_DB_RecNo(long pArea, char *szRecID);

long _stdcall GMW_DB_IsSQL(long pArea);

// Quick one-field access functions
// (these are slow -- do not use in loops)
long _stdcall GMW_DB_QuickSeek(char *szTableName, char *szIndex,
char *szSeekValue, char *szRecID);

long _stdcall GMW_DB_QuickRead(char *szTableName, char *szRecID,
char *szField, char *szValue, int iLen);

long _stdcall GMW_DB_QuickReplace(char *szTableName, char *szRecID,
char *szField, char *szValue, int iAddTo =0);

// Sync functions
int _stdcall GMW_SyncStamp(char *szStamp, char *szOutBuf);

int _stdcall GMW_UpdateSyncLog(char *szTable, char *szRecID,
char *szField, char *szAction);

int _stdcall GMW_ReadImpTLog(char *szFile, int bDelWhenDone, char
*szStatus);

char* _stdcall GMW_NewRecID(char *pBuff, char *pUser);

Integrating With GoldMine

412

// misc functions
long _stdcall GMW_UserAccess(long iOption);

struct GMWnv;
typedef GMWnv *HGMNV;

// GM5S32.DLL business logic functions
long _stdcall GMW_Execute(const char *szFunc, HGMNV hgmnv);

// create, release & copy name value containers
HGMNV __stdcall GMW_NV_Create();

HGMNV __stdcall GMW_NV_CreateCopy(HGMNV hgmnv);

void __stdcall GMW_NV_Delete(HGMNV hgmnv);

void __stdcall GMW_NV_Copy(HGMNV hgmnvDestination , HGMNV
hgmnvSource);

// get and set value by name
const char* __stdcall GMW_NV_GetValue(HGMNV hgmnv, const char* name,
const char* defaultValue);
void __stdcall GMW_NV_SetValue(HGMNV hgmnv, const char* name, const
char* value);

// Check if name exists. returns: 0 failed, 1 success
long __stdcall GMW_NV_NameExists(HGMNV hgmnv, const char* name);

// remove name(s)
void __stdcall GMW_NV_EraseName(HGMNV hgmnv, const char* name);

void __stdcall GMW_NV_EraseAll(HGMNV hgmnv);

// iterate over name-value list (1 based)
long __stdcall GMW_NV_Count(HGMNV hgmnv);

const char* __stdcall GMW_NV_GetNameFromIndex(HGMNV hgmnv, long
index);

const char* __stdcall GMW_NV_GetValueFromIndex(HGMNV hgmnv, long
index);

void __stdcall GMW_NV_SetStr(HGMNV hgmnv, char dlmName, char
dlmVal,const char* pszStr);

#ifdef __cplusplus
 /* close extern "C" { */
 }
#endif

#endif // __GM5S32_H

Integrating With GoldMine

 413

Logging In
The following example uses C++ to access the GM5S32.DLL functions The DLL is
dynamically loaded and its function addresses are retrieved using the
GetProcAddress API.

// prototypes
typedef int (*fnGMW_LoadBDE) (char *szSysDir, char *szGoldDir, char
*szCommonDir, char *szUser);
typedef int (*fnGMW_UnloadBDE) ();
void GM5S32_DLL_Test()
{
 // load the GM5S32.DLL
 HMODULE hLib = LoadLibrary("GM5S32.DLL");
 if(hLib)
 {

 // get proc addresses of GM5S32 functions
 fnGMW_LoadBDE GMW_LoadBDE = (fnGMW_LoadBDE) GetProcAddress(

 (HINSTANCE) hLib,"GMW_LoadBDE");

 fnGMW_UnloadBDE GMW_UnloadBDE = (fnGMW_UnloadBDE)

 GetProcAddress((HINSTANCE) hLib,"GMW_UnloadBDE");

 // initialize the API
 GMW_LoadBDE("d:\\gm4", "d:\\gm4", "d:\\gm4\\demo", szUser, szPass);
 // do whatever..............
 // shut down API
 GMW_UnloadBDE();

 // unload the DLL
 FreeLibrary(hLib);
 }
return;
}

Creating a Contact with Business Logic/
Enumerating a Name Value Container/DataStream

The following DataStream example assumes that GM5S32.DLL has already been
loaded and the function addresses have been retrieved. The first example retrieves a
relatively small number of records into a fixed-size packet buffer, while the second
example retries a large number of records using 100-record packet buffers.

void DataStreamDLL_Example()
{
long iHandle = 0;
long iOK = 0;
// Example 1:
// Get a small number of records and use a fixed size buffer
//
// return all contact names at FrontRange Solutions
//
char *szSQL1 = "SELECT Contact FROM Contact1 "
"WHERE U_COMPANY LIKE 'FRONTRANGE SOLUTIONS%' "
"ORDER BY U_CONTACT";
// send DataStream SQL Query
if((iHandle = GMW_DS_Query(szSQL1)) > 0)

Integrating With GoldMine

414

 {
 // allocate buffer for 200 contacts at 40 chars per/name
 long iBufSize = 200*40 +20;

 char *szBuf = new char[iBufSize];

 // fetch first 200 records into buffer
 iOK = GMW_DS_Fetch(iHandle, szBuf, iBufSize, 200);

 // do whatever with the data
 ODS(szBuf);

 // make sure to delete the buffer
 delete [] szBuf; szBuf = NULL;

 // close the query
 iOK = GMW_DS_Close(iHandle); iHandle = 0;
 }

// Example 2:
// Get a large number of records in 100-record buffers
//
// return all serial numbers beginning with "123...."
//
char *szSQL2 = "SELECT ContSupRef, Address1, AccountNo FROM ContSupp
"
"WHERE RECTYPE = 'P' AND U_CONTACT = 'SERIAL NUMBER' "
"AND U_ContSupRef Like '123%' "
"ORDER BY U_ContSupRef";
// send DataStream SQL Query
if((iHandle = GMW_DS_Query(szSQL2)) > 0)
 {
 char *szBuf = NULL;
 long iBufSize = -1;
 // read while the first character of result is 0
 while((szBuf == NULL || szBuf[0] == '0') && iBufSize)

 {
 // fetch 100 records and get the buffer size needed
 // (set the szBuf and iBufSize parameters to 0 to
 // fetch the data and retrieve the buffer size needed)
 if(iBufSize = GMW_DS_Fetch(iHandle, 0, 0, 100))
 {
 // delete old buffer and allocate new buffer
 delete [] szBuf; szBuf = NULL;
 szBuf = new char[iBufSize];
 // read the data (nGetRecs is 0 since data is already read)
 iOK = GMW_DS_Fetch(iHandle, szBuf, iBufSize, 0);
 // do whatever with the data
 ODS(szBuf);
 }
 }
 // make sure to delete the buffer
 delete [] szBuf; szBuf = NULL;
 // close the query
 iOK = GMW_DS_Close(iHandle); iHandle = 0;
 }
 return;
}

Integrating With GoldMine

 415

Low-Level Work Area
The following example assumes that GM5S32.DLL has already been loaded and the
function addresses have been retrieved. The example opens up the Contact1 and
ContSupp tables to find a particular contact’s phone number and primary e-mail
address.

//
void DB_FuncsDLL_Example()
 {
 long iOK = 0;
 int iBufSize = 100;
 char szBuf[100], szBuf2[100], szAccNo[20+1];

 //
 // Example1:
 // Find a Jon's phone number and primary e-mail address
 //

 char *szName = "JON V. FERRARA";
 // open contact1 and contsupp
 long iC1 = GMW_DB_Open("Contact1");
 long iCS = GMW_DB_Open("ContSupp");

 // tables opened ok?
 if(iC1 && iCS)
 {

 // set the Contact1 index to ContName
 iOK = GMW_DB_SetOrder(iC1, "ContName");

 // seek Jon's name
 //

 if(GMW_DB_Seek(iC1, szName) == 1) // seek exact
 {

 // read Jon's phone number
 iOK = GMW_DB_Read(iC1, "Phone1", szBuf, iBufSize);
 ODS(szBuf); // show phone
 // read Jon's AccountNo
 iOK = GMW_DB_Read(iC1, "AccountNo", szAccNo, 20+1);
 //
 // set range to all contact's e-mail records
 //
 wsprintf(szBuf, "%sPE-MAIL ADDRESS", szAccNo);
 iOK = GMW_DB_Range(iCS, szBuf, szBuf, "ContSupp");

 // loop through all e-mail records

 // and find primary one
 while(iOK && (iOK = GMW_DB_Skip(iCS, 1)))

 // read e-mail address from the ContSupRef field
 // and status from Zip
 iOK=GMW_DB_Read(iCS,"ContSupRef",szBuf,iBufSize);
 iOK=GMW_DB_Read(iCS,"Zip", szBuf2, iBufSize);

 // show e-mail address
 ODS(szBuf);

 // primary e-mail has a '1' in the second

Integrating With GoldMine

416

 // char of Zip

 if(szBuf2[1] == '1')
 break; // found primary address!
 }
 }
 // close the tables
 iOK = GMW_DB_Close(iC1); iC1 = 0;
 iOK = GMW_DB_Close(iCS); iCS = 0;
 }

 return;
 }{

Visual Basic Examples
This section contains function prototypes and examples.

Function prototypes
' Structure for License function
Public Type GMLicInfo
 Licensee As String * 60
 LicNo As String * 20
 SiteName As String * 20
 LicUsers As Long
 SQLUsers As Long
 GSSites As Long
 IsDemo As Long
 IsServerLic As Long
 IsRemoteLic As Long
 ISUSALic As Long
 iReserved1 As Long
 iReserved2 As Long
 iReserved3 As Long
 sReserved As String * 100

End Type

' LoadAPI Functions
Public Declare Function GMW_LoadBDE Lib "GM5S32.dll" (ByVal sSysDir
As String, ByVal sGoldDir As String, ByVal sCommonDir As String,
ByVal sUser As String, ByVal sPassword As String) As Long

Public Declare Function GMW_UnloadBDE Lib "GM5S32.dll" () As Long

Public Declare Function GMW_SetSQLUserPass Lib "GM5S32.dll" (ByVal
sUserName As String, ByVal sPassword As String) As Long

' Business logic functions
' Name-Value parameter passing to business logic function
GMW_Execute(
Public Declare Function GMW_Execute Lib "GM5S32.dll" (ByVal szFunc As
String, ByVal GMPtr As Any) As Long

Public Declare Function GMW_NV_Create Lib "GM5S32.dll" () As Long

Public Declare Function GMW_NV_CreateCopy Lib "GM5S32.dll" (ByVal
hgmnv As Long) As Long

Integrating With GoldMine

 417

Public Declare Function GMW_NV_Delete Lib "GM5S32.dll" (ByVal hgmnv
As Long) As Long

Public Declare Function GMW_NV_Copy Lib "GM5S32.dll" (ByVal
hgmnvDestination As Long, ByVal hgmnvSource As Long) As Long

Public Declare Function GMW_GetLicenseInfo Lib "GM5S32.dll" (ByRef
LicInfo As Any) As Long

Public Declare Function GMW_NV_GetValue Lib "GM5S32.dll" (ByVal hgmnv
As Long, ByVal name As String, ByVal DefaultValue As String) As Long

Public Declare Function GMW_NV_SetValue Lib "GM5S32.dll" (ByVal hgmnv
As Long, ByVal name As String, ByVal Value As String) As Long

Public Declare Function GMW_NV_NameExists Lib "GM5S32.dll" (ByVal
hgmnv As Long, ByVal name As String) As Long

Public Declare Function GMW_NV_EraseName Lib "GM5S32.dll" (ByVal
hgmnv As Long, ByVal name As String) As Long

Public Declare Function GMW_NV_EraseAll Lib "GM5S32.dll" (ByVal hgmnv
As Long) As Long

Public Declare Function GMW_NV_Count Lib "GM5S32.dll" (ByVal hgmnv As
Long) As Long

Public Declare Function GMW_NV_GetNameFromIndex Lib "GM5S32.dll"
(ByVal hgmnv As Long, ByVal index As Long) As Long

Public Declare Function GMW_NV_GetValueFromIndex Lib "GM5S32.dll"
(ByVal hgmnv As Long, ByVal index As Long) As Long

' Low-Level DB funcs
Public Declare Function GMW_DB_Open Lib "GM5S32.dll" (ByVal
sTableName As String) As Long

Public Declare Function GMW_DB_Close Lib "GM5S32.dll" (ByVal lArea As
Long) As Long

Public Declare Function GMW_DB_Append Lib "GM5S32.dll" (ByVal lArea
As Long, ByVal sRecID As String) As Long

Public Declare Function GMW_DB_Replace Lib "GM5S32.dll" (ByVal lArea
As Long, ByVal sField As String, ByVal sData As String, ByVal iAddTo
As Long) As Long

Public Declare Function GMW_DB_Delete Lib "GM5S32.dll" (ByVal lArea
As Long) As Long

Public Declare Function GMW_DB_UnLock Lib "GM5S32.dll" (ByVal lArea
As Long) As Long

Integrating With GoldMine

418

Public Declare Function GMW_DB_Read Lib "GM5S32.dll" (ByVal lArea As
Long, ByVal sField As String, ByVal sbuf As String, ByVal lbufsize As
Long) As Long

Public Declare Function GMW_DB_Top Lib "GM5S32.dll" (ByVal lArea As
Long) As Long

Public Declare Function GMW_DB_Bottom Lib "GM5S32.dll" (ByVal lArea
As Long) As Long

Public Declare Function GMW_DB_SetOrder Lib "GM5S32.dll" (ByVal lArea
As Long, ByVal Stag As String) As Long

Public Declare Function GMW_DB_Seek Lib "GM5S32.dll" (ByVal lArea As
Long, ByVal sParam As String) As Long

Public Declare Function GMW_DB_Skip Lib "GM5S32.dll" (ByVal lArea As
Long, ByVal lSkip As Long) As Long

Public Declare Function GMW_DB_Goto Lib "GM5S32.dll" (ByVal lArea As
Long, ByVal sRecNo As String) As Long

Public Declare Function GMW_DB_Move Lib "GM5S32.dll" (ByVal lArea As
Long, ByVal sCommand As String, ByVal sParam As String) As Long
Public Declare Function GMW_DB_Search Lib "GM5S32.dll" (ByVal lArea
As Long, ByVal sExpr As String, ByVal sRecID As String) As Long

Public Declare Function GMW_DB_Filter Lib "GM5S32.dll" (ByVal lArea
As Long, ByVal sFilterExpr As String) As Long

Public Declare Function GMW_DB_Range Lib "GM5S32.dll" (ByVal lArea As
Long, ByVal sMin As String, ByVal sMax As String, ByVal Stag As
String) As Long

Public Declare Function GMW_DB_RecNo Lib "GM5S32.dll" (ByVal lArea As
Long, ByVal sRecID As String) As Long

Public Declare Function GMW_DB_IsSQL Lib "GM5S32.dll" (ByVal lArea As
Long) As Long

' Sync funcs
Public Declare Function GMW_NewRecID Lib "GM5S32.dll" (ByVal szRecid
As String, ByVal szUser As String) As String

Public Declare Function GMW_UpdateSyncLog Lib "GM5S32.dll" (ByVal
sTable As String, ByVal sRecID As String, ByVal sField As String,
byvalsAction As String) As Long

Public Declare Function GMW_ReadImpTLog Lib "GM5S32.dll" (ByVal sFile
As String, lDelWhenDone As Long, sStatus As String) As Long

Public Declare Function GMW_SyncStamp Lib "GM5S32.dll" (sStamp As
String, sOutBuf As String) As Long

' Datastream funcs
Public Declare Function GMW_DS_Query Lib "GM5S32.dll" (ByVal sSQL As
String, ByVal sFilter As String, ByVal sFDlm As String, ByVal sRDlm

Integrating With GoldMine

 419

As String) As Long

Public Declare Function GMW_DS_Range Lib "GM5S32.dll" (ByVal sTable
As String, ByVal Stag As String, ByVal sTopLimit As String, ByVal
sBotLimit As String, ByVal sFields As String, ByVal sFilter As
String, ByVal sFDlm As String, ByVal sRDlm As String) As Long

Public Declare Function GMW_DS_Fetch Lib "GM5S32.dll" (ByVal iHandle
As Long, ByVal sbuf As String, ByVal iBufSize As Long, ByVal iGetRecs
As Long) As Long

Public Declare Function GMW_DS_Close Lib "GM5S32.dll" (ByVal iHandle
As Long) As Long

Public Declare Function GMW_IsUserGroupMember Lib "GM5S32.DLL" (ByVal
szGroup As String, ByVal szUserID As String) As Long
' Misc WinAPI funcs used by VB with the GM5S32.DLL
Public Declare Sub CopyMemory Lib "kernel32" Alias "RtlMoveMemory"
(Destination As Any, Source As Any, ByVal Length As Long)
Public Declare Function lstrlen Lib "kernel32" Alias "lstrlenA"
(ByVal lpString As String) As Long
'
'
' NOTE! All GM5S32 Funcs that return a string pointer should be
converted using
' the following function. For example:
'
' sResult = PtrToStr(GMW_NV_GetValue(lGMPtr, "OutPut", ""))
'
Public Function PtrToStr(ByVal lpsz As Long) As String
Dim strOut As String
Dim lngStrLen As Long

 lngStrLen = lstrlen(ByVal lpsz)

 ' If returning larger packets, you may have to
 ' increase this value
 lngStrLen = 64000

 If (lngStrLen > 0) Then
 strOut = String$(lngStrLen, vbNullChar)
 Call CopyMemory(ByVal strOut, ByVal lpsz, lngStrLen)
 lngStrLen = lstrlen(strOut)
 PtrToStr = Left(strOut, lngStrLen)
 Else
 PtrToStr = ""
 End If
 strOut = ""

End Function

Integrating With GoldMine

420

Logging In
Dim lResult As Long

lResult = GMW_LoadBDE("c:\gm5\", "c:\gm5\gmbase\", "c:\gm5\demo\",
"MASTER", "ACCESS")

If lResult <> 1 Then
 MsgBox "Unable to Load API"

Creating a Contact
The following example assumes that GMXS32.DLL has already been loaded and
functions have been declared.

Dim lGMPtr As Long, _
 sGMnvm As String, _
 sGMvle As String, _
 lResult As Long

'//Create NV and pass pointer value to a variable
lGMPtr = GMW_NV_Create()

'//Fill Variables with Nulls
 sGMnvm = String$(100, Chr(0))
 sGMvle = String$(100, Chr(0))

'//Set Name Values
lResult = GMW_NV_SetValue(lGMPtr, "Company", "FrontRange Solutions")
lResult = GMW_NV_SetValue(lGMPtr, "Contact", "Calvin Luttrell")
lResult = GMW_NV_SetValue(lGMPtr, "Phone1", "(310)555-1212")
lResult = GMW_NV_SetValue(lGMPtr, "Email", "calvin@gm.com")
lResult = GMW_NV_SetValue(lGMPtr, "WebSite", "www.gm.com")

'//Execute Business Logic Function
lResult = GMW_Execute("WriteContact", lGMPtr)

Enumerating a Container
The following example assumes that GMXS32.DLL has already been loaded and
functions have been declared.

'//Get count from NV for loop
lCount = GMW_NV_Count(lGMPtr)

For i = 1 To lCount

 '//Get name from NV
 txttemp1.Text = GMW_NV_GetNameFromIndex(lGMPtr, i)

 '//Get value from NV
 txttemp2.Text = GMW_NV_GetValueFromIndex(lGMPtr, i)

Integrating With GoldMine

 421

 '//Display in list box
 sResult = txttemp1.Text + "=" + txttemp2.Text

 List1.AddItem sResult
Next

DataStream
The following example assumes that GM5S32.DLL has already been loaded and
functions have been declared.

sFilter = " '" + UCase$(txtMatchValue.Text) + "' $ UPPER(ContSupRef)"
iHandle = GMW_DS_Range("ContSupp", "ContSPFD", "PE-MAIL ADDRESS",
"PE-MAIL ADDRESS~", "ContSupRef;", sFilter, " ", Chr(13) + Chr(10))
If iHandle > 0 Then
 Do
 'The initial fetch will tell us how much to allocate the
 'buffer for a 50 record packet
 sBuf = String$(1, 0)
 iBufSize = GMW_DS_Fetch(iHandle, sBuf, 0, 50)

 'Now, we actually grab some data…
 sBuf = String$(iBufSize + 1, 0) 'NOTE: You must initialize
 'strings to the
 'proper size before using.
 lRes = GMW_DS_Fetch(iHandle, sBuf, iBufSize, 0)

 'Check if more data is available or not
 If Left(sBuf, 1) = "3" Then
 bEOF = True
 Else
 bEOF = False
 End If

 'Add the results to a multi-line text box for display
 txtResults.Text = txtResults.Text + Mid(sBuf, 14, iBufSize)

 Loop until bEOF

Else
 MsgBox ("Error: Invalid DS Handle!")
End If

Low-Level WorkArea
The following example assumes that GMXS32.DLL has already been loaded and
functions have been declared. The example opens up the CONTACT1 and
CONTSUPP tables to find a particular contact’s phone number and primary e-mail
address. The Contact name is stored in a VB Text box.

Dim lC1WA As Long
Dim lC2WA As Long
Dim lCSWA As Long
Dim lRes As Long
Dim sAccNo As String
Dim sBuf1 As String
Dim sBuf2 As String

 'Initialization
 lblEmail.Caption = ""
 lblPrevresult.Caption = ""

Integrating With GoldMine

422

 lblCompany.Caption = ""
 lblPhone.Caption = ""
 sAccNo = String$(21, 0)

 'Open data files
 lC1WA = GMW_DB_Open("Contact1")
 lC2WA = GMW_DB_Open("Contact2")
 lCSWA = GMW_DB_Open("ContSupp")

 'If all files are opened OK...
 If (lC1WA And lC2WA And lCSWA) Then

 'Set the index order
 Res = GMW_DB_SetOrder(lC1WA, "ContName")

 'Perform the seek
 If GMW_DB_Seek(lC1WA, UCase$(txtContactName.Text)) = 1 Then

 'Get the AccountNo for the matching record
 lRes = GMW_DB_Read(lC1WA, "AccountNo", sAccNo, 21)

 ' Get the Phone and Company fields from Contact1

 'Pre-allocate string buffer
 sBuf1 = String$(100, 0)
 sBuf2 = String$(100, 0)

 'Get the field data
 lRes = GMW_DB_Read(lC1WA, "Company", sBuf2, 100)
 lRes = GMW_DB_Read(lC1WA, "Phone1", sBuf1, 100)

 'Update the display labels
 lblCompany.Caption = Trim(sBuf2)
 lblPhone.Caption = Trim(sBuf1)

 ' Get the Previous result field from Contact2

 'Set the index order
 lRes = GMW_DB_SetOrder(lC2WA, "Contact2")

 'Perform the seek
 If GMW_DB_Seek(lC2WA, sAccNo) = 1 Then

 'Pre-allocate string buffer
 sBuf1 = String$(100, 0)

 'Get the field data
 lRes = GMW_DB_Read(lC2WA, "PREVRESULT", sBuf1, 100)

 'Display the field data
 lblPrevresult.Caption = sBuf1

 End If

 ' Get the e-mail address from ContSupp

 'Pre-allocate string buffer
 sBuf1 = String$(100, 0)

 'Initialize the range limits
 sBuf1 = Left(sAccNo + Space$(20), 20) + "PE-MAIL ADDRESS"

 'Set the range and go top
 lRes = GMW_DB_Range(lCSWA, sBuf1, sBuf1, "ContSupp")
 lRes = GMW_DB_Top(lCSWA)

 'Loop until a primary e-mail is found
 Do While (lRes = 1)

 'Pre-allocate string buffers
 sBuf1 = String$(100, 0)
 sBuf2 = String$(100, 0)

Integrating With GoldMine

 423

 'Get the field data
 lRes = GMW_DB_Read(lCSWA, "ContSupRef", sBuf1, 100)
 lRes = GMW_DB_Read(lCSWA, "Zip", sBuf2, 100)

 'Check if primary e-mail address
 If Mid$(sBuf2, 2, 1) = "1" Then

 'Update the label
 lblEmail.Caption = Trim(sBuf1)

 Exit Do 'all done

 End If

 'Skip to next record
 lRes = GMW_DB_Skip(lCSWA, 1)

 Loop

 Else

 'Notify user of problem
 MsgBox ("Could not locate the specified contact.")

 End If

 Else

 'All tables could not be opened.
 MsgBox ("Could not open the data files.")

 'Exit program
 Unload Me

 End If

Delphi Examples
This section includes function prototypes and examples.

Function prototypes
Type
 TGMW_LicInfo = record
 Licensee: array [0..59] of char;
 LicNo: array [0..19] of char;
 SiteName: array [0..19] of char;
 LicUsers,
 SQLUsers,
 GSSites,
 IsDemo,
 IsServerLic,
 IsRemoteLic,
 IsUSALic,
 DLLVersion,
 Reserved1,
 Reserved2:longint;
 Reserved: array [0..99] of char;
 end;

Type
 hgmnv = pointer;

// GM5S32.DLL initialization functions
function GMW_LoadBDE(sSysDir, sGoldDir, sCommonDir, sUser, sPassword:
Pchar): integer; stdcall; external 'GM5S32.DLL';

Integrating With GoldMine

424

function GMW_UnloadBDE: integer; stdcall; external 'GM5S32.DLL';

function GMW_SetSQLUserPass(sUserName, sPassword: PChar):integer;
stdcall; external 'GM5S32.DLL';

function GMW_GetLicenseInfo(pGMW_LicInfo: pointer):integer; stdcall;
external 'GM5S32.DLL';

// GM5S32.DLL Sync functions
function GMW_UpdateSyncLog(sTable, sRecID, sField, cAction:
PChar):integer; stdcall; external 'GM5S32.DLL';

function GMW_ReadImpTLog(sFile: PChar; bDelWhenDone: integer;
sStatus: PChar): integer; stdcall; external 'GM5S32.DLL';

procedure GMW_NewRecID(sRecID, sUser: PChar); stdcall; external
'GM5S32.DLL';

procedure GMW_SyncStamp(sStamp, sOutBuf: PChar); stdcall; external
'GM5S32.DLL';

// GM5S32.DLL DataStream functions
function GMW_DS_Range(sTable, sTag, sTopLimit, sBotLimit, sFields,
sFilter, sFDlm, sRDlm: PChar): longint; stdcall; external
'GM5S32.DLL';

function GMW_DS_Query(sSQL, sFilter, sFDlm, sRDlm: PChar): longint;
stdcall; external 'GM5S32.DLL';

function GMW_DS_Fetch(iHandle: longint; sBuf: Pchar; iBufSize,
iGetRecs: integer): longint; stdcall; external 'GM5S32.DLL';

function GMW_DS_Close(iHandle: longint):longint; stdcall; external
'GM5S32.DLL';

// GM5S32.DLL DBF workarea functions
function GMW_DB_Open(sTable: Pchar): longint; stdcall; external
'GM5S32.DLL';

function GMW_DB_Close(lArea: Longint): longint; stdcall; external
'GM5S32.DLL';

function GMW_DB_Append(lArea: Longint; sRecID: PChar): longint;
stdcall; external 'GM5S32.DLL';

function GMW_DB_Replace(lArea: Longint; sField, sData: PChar; iAddTo:
integer): longint; stdcall; external 'GM5S32.DLL';

function GMW_DB_Delete(lArea: Longint): longint; stdcall; external
'GM5S32.DLL';

function GMW_DB_Unlock(lArea: Longint): longint; stdcall; external
'GM5S32.DLL';

Integrating With GoldMine

 425

function GMW_DB_Read(lArea: Longint; sField, sBuf: PChar; iBufSize:
integer): longint; stdcall; external 'GM5S32.DLL';

function GMW_DB_Top(lArea: Longint): longint; stdcall; external
'GM5S32.DLL';

function GMW_DB_Bottom(lArea: Longint): longint; stdcall; external
'GM5S32.DLL';

function GMW_DB_SetOrder(lArea: Longint; sTag: Pchar): longint;
stdcall; external 'GM5S32.DLL';

function GMW_DB_Seek(lArea: Longint; sParam: PChar): longint;
stdcall; external'GM5S32.DLL';

function GMW_DB_Skip(lArea: Longint; iSkip: integer): longint;
stdcall; external 'GM5S32.DLL';

function GMW_DB_Goto(lArea: Longint; sRecNo: PChar): longint;
stdcall; external 'GM5S32.DLL';

function GMW_DB_Move(lArea: Longint; sCommand, sParam: PChar):
longint; stdcall; external 'GM5S32.DLL';

function GMW_DB_Search(lArea: Longint; sExpr, sRecID: PChar):
longint; stdcall; external 'GM5S32.DLL';

function GMW_DB_Filter(lArea: Longint; sFilterExpr: Pchar): longint;
stdcall; external 'GM5S32.DLL';

function GMW_DB_Range(lArea: Longint; sMin, sMax, sTag: PChar):
longint; stdcall; external 'GM5S32.DLL';

function GMW_DB_RecNo(lArea: Longint; sRecID: PChar): longint;
stdcall; external 'GM5S32.DLL';

function GMW_DB_IsSQL(lArea: Longint): longint; stdcall; external
'GM5S32.DLL';

// GM5S32.DLL Quick one-field access functions
function GMW_DB_QuickSeek(sTableName, sIndex, sSeekValue, sRecID:
PChar): longint; stdcall; external 'GM5S32.DLL';

function GMW_DB_QuickRead(sTableName, sRecID, sField, sValue: Pchar;
iLen: integer): longint; stdcall; external 'GM5S32.DLL';

function GMW_DB_QuickReplace(sTableName, sRecID, sField, sValue:
Pchar; iAddTo: integer): longint; stdcall; external 'GM5S32.DLL';

// GM5S32.DLL Misc functions
function GMW_IsUserGroupMember(szGroup, szUserID: PChar): longint;
stdcall; external 'GM5S32.DLL';

function GMW_UserAccess(Option: longint): longint; stdcall; external
'GM5S32.DLL';

Integrating With GoldMine

426

function GMW_CalAccess(RecType, UserID, Number1: PChar): longint;
stdcall; external 'GM5S32.DLL';

function GMW_HistAccess(RecType, UserID: PChar): longint; stdcall;
external 'GM5S32.DLL';

// GM5S32.DLL business logic functions
function GMW_Execute(Func: Pchar; PGMNV: hgmnv): longint; stdcall;
external 'GM5S32.DLL';

// create, release & copy name value containers
function GMW_NV_Create: pointer; stdcall; external 'GM5S32.DLL';

function GMW_NV_CreateCopy(PGMNV: hgmnv): pointer; stdcall; external
'GM5S32.DLL';

procedure GMW_NV_Delete(PGMNV: hgmnv); stdcall; external
'GM5S32.DLL';

procedure GMW_NV_Copy(Destination, Source: hgmnv); stdcall; external
'GM5S32.DLL';

// get and set value by name
function GMW_NV_GetValue(PGMNV: hgmnv; Name, DefaultValue: PChar):
PChar; stdcall; external 'GM5S32.DLL';

procedure GMW_NV_SetValue(PGMNV: hgmnv; Name, Value: PChar); stdcall;
external 'GM5S32.DLL';

// Check if name exists. returns: 0 failed, 1 success
function GMW_NV_NameExists(PGMNV: hgmnv; Name: PChar): longint;
stdcall;external 'GM5S32.DLL';

// remove name(s)
procedure GMW_NV_EraseName(PGMNV: hgmnv; Name: PChar); stdcall;
external 'GM5S32.DLL';

procedure GMW_NV_EraseAll(PGMNV: hgmnv); stdcall; external
'GM5S32.DLL';

// iterate over name-value list (1 based)
function GMW_NV_Count(PGMNV: hgmnv): longint; stdcall; external
'GM5S32.DLL';

function GMW_NV_GetNameFromIndex(PGMNV: hgmnv; Index: longint):
PChar; stdcall; external 'GM5S32.DLL';

function GMW_NV_GetValueFromIndex(PGMNV: hgmnv; Index: longint):
PChar; stdcall; external 'GM5S32.DLL';

// Set a series of values in one shot
procedure GMW_NV_SetStr(PGMNV: hgmnv; dlmName, dlmVal: Char;
StringVal: PChar); stdcall; external 'GM5S32.DLL';

Logging In

The following example assumes that GMXS32.DLL has already been loaded
and function addresses have been retrieved

Integrating With GoldMine

 427

// Login to GM5

iRet := GMW_LoadBDE('C:\GM5', 'C:\GM5\GMBASE', 'C:\GM5\DEMO',
'NELSON' , '');

if iRet < 1 then
 ShowMessage('LoadAPI Failed. Err: '+IntToStr(iRet));

Creating a Contact
The following example assumes that GMXS32.DLL has already been loaded and
function addresses have been retrieved.

// Create a new NV container
 pGMNV := GMW_NV_Create;

 // Test if NV is valid
 If pGMNV <> nil then
 begin
 // Load the NVs to create the contact record
 GMW_NV_SetValue(pGMNV, 'Company', 'FrontRange Solutions');
 GMW_NV_SetValue(pGMNV, 'Contact', 'Nelson Fernandez');
 GMW_NV_SetValue(pGMNV, 'Phone1', '(310)555-1212');
 GMW_NV_SetValue(pGMNV, 'Email', 'nelson@gm.com');
 GMW_NV_SetValue(pGMNV, 'WebSite', 'www.gm.com');

 // Exec the WriteContact function
 if GMW_Execute('WriteContact', pGMNV) > 0 then
 begin
 ShowMessage('Contact record was created. AccountNO=' +
 GMW_NV_GetValue(pGMNV, 'AccountNo', ''));

 //Remove the pGMNV
 GMW_NV_Delete(pGMNV);
 end
 else
 // Display error
 ShowMessage('WriteContact Failed.');;
 end

 else
 // Display Error
 ShowMessage('Could not create NV container.');

Enumerating a Container
The following example assumes that GMXS32.DLL has already been loaded and
function addresses have been retrieved.

// Determine the number of returned values
lCount := GMW_NV_Count(pGMNV);

// If > 0 then iterate through the list
If lCount > 0 then
 For i := 1 to lCount do // Add to the results memo control
 mResults.Text := mResults.Text +
 GMW_NV_GetNameFromIndex(pGMNV,i)+'='+
 GMW_NV_GetValueFromIndex(pGMNV, i)+#13+#10;

Integrating With GoldMine

428

DataStream
The following example assumes that GMXS32.DLL has already been loaded and
function addresses have been retrieved.

iHandle:=GMW_DS_RANGE('Contsupp', 'Contspfd', 'PE-MAIL ADDRESS',
'PE-MAIL ADDRESS~', 'ContSupRef;', PChar('''' +
UpperCase(cebMatchValue.Text)+''' $ Upper(ContSupRef)'), '',
#13+#10);

If iHandle > 0 then
Begin
 bDone :=FALSE
 Repeat

 //Get Buffer Size
 iBufSize:=GMW_DS_Fetch(iHandle,NIL, 0, FETCH_SIZE);

 //Allocate Buffer Memory
 pcBuffer:=AllocMem(iBufSize);

 //Fetch Data
 lres:=GMW_DS_Fetch(iHandle, pcBuffer, iBufSize, 0);
 if lres>0 then //Fetch Successfully?
 begin

 //Get results
 sResults:=sResults + Copy(StrPas(pcBuffer),12,iBufSize-12);
 FreeMem(pcBuffer, iBufSize); //Free buffer memory

 if Copy(sHeader,1,1)<>'3' then //End of File in GM?
 bDone:=TRUE
 else
 bDone:=FALSE;

 end;

 until bDone
 lres:=GMW_DS_Close(iHandle);
end;

Low-Level Work Area
The following example assumes that GMXS32.DLL has already been loaded and
function addresses have been retrieved. The example opens up the CONTACT1 and
CONTSUPP tables to find a particular contact’s phone number and primary e-mail
address.

Var
 lRes, lC1WA, lC2WA, lCSWA: longint;
 aAccNo: array[0..20] of char;
 aValue1: array[0..100] of char;
 aValue2: array[0..100] of char;
begin
 // Open files
 lC1WA := GMW_DB_Open('Contact1');
 lC2WA := GMW_DB_Open('Contact2');
 lCSWA := GMW_DB_Open('Contsupp');

Integrating With GoldMine

 429

 // Make sure all files were opened OK
 if (lC1WA>0) and (lC2WA>0) and (lCSWA>0) then
 begin
 // Set the index order
 lRes := GMW_DB_SetOrder(lC1WA, 'ContName');

 // Perform the seek
 If GMW_DB_Seek(lC1WA, PChar(UpperCase(cebSearchValue.Text)))=1
then
 begin

 // Read the AccountNo
 GMW_DB_Read(lC1WA, 'AccountNo', aAccNo, 21);

 // Get the field data
 lRes := GMW_DB_Read(lC1WA, 'Company', aValue1, 100);

 //Display the results
 clCompany.Caption := StrPas(aValue1);

 //Init the range limit string
 StrPCopy(aValue1, Copy(StrPas(aAccNo),1,20)+'PE-MAIL ADDRESS');

 // Set the range and go to Top
 lRes := GMW_DB_Range(lCSWA, aValue1, aValue1, 'Contsupp');
 lRes := GMW_DB_Top(lCSWA);

 // Loop through records..
 While lRes = 1 do
 begin

 //Read the field data...
 lRes := GMW_DB_Read(lCSWA, 'ContSupRef', aValue1, 100);
 lRes := GMW_DB_Read(lCSWA, 'ZIP', aValue2, 100);

 if aValue2[1] = '1' then
 begin
 clEmail.Caption := aValue1;
 Exit;
 end;

 lRes := GMW_DB_Skip(lCSWA, 1);

 end;

 end
 else
 // Notify user of problem
 ShowMessage('Could not locate the specified contact!');
 end
 else
 // Notify user of problem
 ShowMEssage('Could not open all data files');

 GMW_UnloadBDE;
end;

 431

General Index
Activities

creating or updating271
AddContactGrpMembers................. 281–83
AddContactGrpMembers function.......281
AddFolder function.................................306
Alert

attaching an alert to the specified
contact record286

returning alerts attached to a contact
record..285

returning all defined alerts286
API

logging in multiple users97
Append function................................ 33, 182
AttachTrack function279
Automated Process..................................279

retrieving the default contact
automated process291

BDE session
closing ... 95, 96
loading .. 92, 93

Boolean operator......................................365
BR4...25
Business Logic Methods

accessing ...106
comparing methodology to that of

GM5S32.DLL90
using to simplify procedures.............263
working with263

C++ examples for GM5S32.DLL...... 409–15
CAL.DBF... 378–79

SQL..394
Xbase ...378

CalComplete function 52, 199
Calendar

completing an activity 52–54
deleting Calendar items292

CallerID function 54, 201
Close function 34, 182
code examples

for GM5S32.DLL............................ 409–29
conditionals ..365
contact group

adding contacts to 281
creating ... 280

Contact Groups
retrieving names of contact groups ..288

contact information
accessing, using Open, Move, or Read

... 47, 193
accessing, using RecordObj 47, 193

contact record
creating or updating an additional.. 267,

276, 277, 278
linking contact records to an accounting

application ... 30
Contact Record

adding a record............................ 124, 156
attaching an alert to the specified

contact record 286
attaching an automated process........ 279
creating or updating 264
creating or updating a referral 270–71
deleting the current record 125, 157
evaluating an Xbase expression on a

contact record 289
reading a Contact1 or Contact2 record

... 284
retrieving the default contact

automated process 291
returning alerts attached to a contact

record.. 285
updating notes of a primary contact

record.. 266
CONTACT1.DBF 379–81

SQL.. 395
Xbase ... 379

CONTACT2.DBF
SQL.. 398
Xbase ... 382

ContactLogin function 318
CONTGRPS.DBF

SQL.. 399
Xbase ... 383

CONTHIST.DBF
SQL.. 400

Integrating With GoldMine

432

Xbase... 383
CONTSUPP.DBF............................... 385–86

SQL ... 401
Xbase... 385

COUNTER function.......................... 55, 202
CreateContactGroup function............... 280
CreateRemoteLicense function 296
Curtaining

checking for record curtaining.......... 296
retrieving visible fields 295

data
accessing low-level data using work

areas.. 121, 153
merging data into a document............ 29
retrieving data with DataStream 116,

146
data file

accessing... 33, 181
closing... 123, 155
opening............................40, 123, 154, 186
querying for a field value 125, 157

database
file location .. 377
sessions, handling............................... 263
updating information..................... 29–30

database structures
CAL.DBF.. 378–79
CONTACT1.DBF 379–81
CONTSUPP.DBF........................... 385–86
GoldMine 5.5 377–91
GoldMine Sales and Marketing 391–407

DataStream
advantages of using.................... 116, 147
Close subcommand 57, 205
Fetch subcommand....................... 57, 205
functions....................................... 117, 147
performance advantages.............. 58, 208
record selection 117, 147
retrieving data with.................... 116, 146
returning GoldMine record data 56, 203

date and time stamps
converting to TLog timestamps.......... 77

dBASE functions 364
DDE............... See Dynamic Data Exchange
DDEINITIATE function 31
DDERequestor ... 25
decrypting encoded text......................... 291

DecryptString function........................... 291
Delete function 35, 183
DeleteFolder function............................. 307
DeleteMail function 303
DeleteMessages function 312
DeleteSchedule function 292
Delphi examples...................................... 423
Delphi examples for GM5S32.DLL..423–29
Detail Record

creating or updating........................... 268
developers FTP site................................... 24
dialog box

displaying a message dialog box 67, 215
document link, creating or updating 66,

214
Dynamic Data Exchange.........27–87, 27–87

APPEND function............................33–34
application service name 30
CalComplete.....................................52–54
CallerID.................................54–55, 54–55
Close function34–35
Counter function................................... 56
DDE item string 30
definition.. 27
establishing a conversation 31
Expr function....................................59–60
Filter...35–37
FormAddFields function 106
FormClearFields function.................... 62
FormCloseForm 62
FormGetFieldName.............................. 63
FormNewFormNo 64
FormQueryCreate................................. 64
GoldMine license macros ...86–87, 86–87
GoldMine's DDE server27–87
identifying incoming telephone

numbers ... 30
inserting incoming e-mail...............27–30
InsHistory ...64–66
LinkDoc...66–67
linking e-mail to external systems...... 30
macros .. 77, 225
merge form macros..............27–87, 27–87
merging a document with 29
Move..37–40
MsgBox..67–69
MsgBox function..................67–69, 67–69

Integrating With GoldMine

 433

NewForm.. 69–71
NewGroup 71–72
NewMember function 72–73
Open.. 40–41
Range .. 41–42
Read... 73–75
RecNo.. 42–43
Replace function44
Search.. 75–76
SendPage .. 75–76
service topic ...30
StatusMsg ...76
transferring data to accounting

application ...30
Unlock...46
updating database........................... 29–30
using to query for data30
working with DDE functions32

E-mail
accessing e-mail templates.................308
account information, retrieving308
adding an E-mail Center folder.........306
deleting an E-Mail Center folder.......307
deleting online e-mail messages312
filing a message in History303
managing internet e-mail preferences

...313
name/value functions297
obtaining a list of E-Mail Center folders

...307
queuing a message for delivery \r ...301
retrieving a manual list of recipients 313
retrieving e-mail account information

...308
returning a list of unique From

addresses..307
saving a manual list of recipients......313
updating an e-mail address265

empty child container, creating111
empty record

adding ... 33, 182
encrypting text ...290
EncryptString function290
exported records

counting the number of 64, 211, 212
Expr function...................................... 59, 208
external application

linking with GoldMine fields 46, 192
field

deleting from a form............................. 62
returning a FormNo value to register

unattached fields............................... 64
field name

returning for an expression, macro, or
field ... 63

field value
changing 43–44, 126, 159
querying a data file for 125, 157
reading.. 134, 168
replacing 134, 169

FieldAccessRights function.................... 295
FileMail function...................................... 303
filter creation 127, 160
Filter function..................................... 35, 183
FolderList function 307
form

adding merge fields 106
closing a profile 62
deleting a field from a form................. 62

FormAddFields function 60, 209, See
Dynamic Data Exchange

FormClearFields function................. 62, 210
FormCloseForm function 62, 210
FormCreateFile function................... 62, 210
FormGetFieldName function........... 63, 211
FormNewFormNo function 64, 211
FormQueryCreate function.............. 64, 211
FromList function 307
GetAccountsList function....................... 308
GetActiveOppty function................. 52, 199
GetAllAlerts function.............................. 286
GetContactAlerts function 285
GetEmailPrefs function........................... 313
GetGroupName function........................ 288
GetGroupUsersList function.................. 287
GetLoginCredentials 51, 197, 198
GetManualRcptList function 313
GetNewContactAP function 291
GetUserAccess function.......................... 294
GetUserMemberships function 288
GetUsersList function 287
GM5S32.DLL 121, 153

database access and sync log updates 89
loading and logging in 91

Integrating With GoldMine

434

synchronization functions 135, 171
GM5S32.DLL code examples........... 409–29

C++ ... 409–15
Delphi ... 423–29
Visual Basic.................................... 416–23

GM5TP.DLL... 99
GMW_DB_Append function......... 124, 156
GMW_DB_Bottom function 132, 167
GMW_DB_Close function.............. 123, 155
GMW_DB_Delete function 125, 157
GMW_DB_Filter function 127, 160
GMW_DB_Goto function............... 131, 164
GMW_DB_IsSQL function............. 124, 156
GMW_DB_Move function 130, 163
GMW_DB_Open function.............. 123, 154
GMW_DB_QuickRead function.... 134, 168
GMW_DB_QuickReplace function134, 169
GMW_DB_QuickSeek function..... 133, 168
GMW_DB_Range function 128, 161
GMW_DB_Read function 125, 157
GMW_DB_RecNo function............ 126, 158
GMW_DB_Replace function.......... 126, 159
GMW_DB_Search function............ 128, 161
GMW_DB_Seek function 129, 162
GMW_DB_SetOrder function 130, 163
GMW_DB_Skip function 132, 166
GMW_DB_Top function 131, 166
GMW_DB_Unlock 127, 159
GMW_DS_Close...............117, 121, 147, 153
GMW_DS_Fetch.............................. 117, 147
GMW_DS_Query 117, 147
GMW_DS_Range 117, 147
GMW_Execute function 106
GMW_GetLicenseInfo function 115, 116
GMW_LoadBDE function..92, 93, 140, 142,

143
GMW_MUBeginSession function........... 98
GMW_MULogin function........................ 97
GMW_MULogin function........................ 97
GMW_MULogout function 98, 144
GMW_NewRecID function............ 137, 173
GMW_NV_AppendEmptyNvValue

function .. 112, 317
GMW_NV_AppendNvValue function 317
GMW_NV_AppendValue function..... 111,

112
GMW_NV_Copy function 100

GMW_NV_Count function.................... 104
GMW_NV_Create function 99
GMW_NV_CreateCopy function 100
GMW_NV_Delete function 101
GMW_NV_EraseAll function................ 103
GMw_NV_EraseName function 110
GMW_NV_EraseName function 103
GMW_NV_GetMultiValue function 110
GMW_NV_GetMultiValueCount function

... 108
GMW_NV_GetNameFromIndex function

... 104
GMW_NV_GetNVValue function........ 109
GMW_NV_GetValue function 101
GMW_NV_GetValueFromIndex function

... 105
GMW_NV_GetValueType function 106
GMW_NV_IsRoot function 107
GMW_NV_NameExists function.......... 102
GMW_NV_SetEmptyNvValue function

... 111
GMW_NV_SetNvValue function 110
GMW_NV_SetStr function 105
GMW_NV_SetValue function 102
GMW_ReadImpTLog function136, 172,

222
GMW_SetSQLUserPass function............ 92
GMW_SyncStamp function 138, 173
GMW_UnloadBDE function.............. 95, 96
GMW_UpdateSyncLog function ..135, 171,

221
GMW_UserAccess function........... 113, 223
GoldMine 5.5 database structures ...377–91
GoldMine KnowledgeBase 24
GoldMine license macros.......see Dynamic

Data Exchange, see Dynamic Data
Exchange

GoldMine Sales and Marketing database
structures391–407

group
adding a group member 72
creating an empty group 71

History
filing a message in History................ 303

history record
creating... 64, 212
creating or updating........................... 275

Integrating With GoldMine

 435

IIS extensions, and multi-threaded
applications ..99

import file
importing a prepare TLog import file

... 136, 172, 222
index

file location ...377
setting the current index tag...... 130, 163

INFOMINE.DBF
SQL..402
Xbase ...386

InsHistory function 64, 212
integrating with GoldMine

methods ..22
integration tools

BR4 ..25
DDERequestor25

interfacing with GoldMine............. 377, 393
internet

e-mail preferences313
IsContactCurtained function..................296
IsSQL function 37, 184
KnowledgeBase..24
license

generating a remote license file.........296
removing a remote license297
returning GoldMine’s Licensing

Information 115, 116
LinkDoc function 66, 214
linked document

creating or updating269
logical evaluators.....................................365
logicals...368
login

creating a new GoldMine login.........293
login sessions, switching between98
LOOKUP.DBF

Xbase ...387
LOOKUP.INI..363
macro

identifying by file name 73, 218
identifying by number.................. 73, 218

macros ... 73, 218
creating ... 73, 218
DDE macros for Merge Forms..... 84, 233
DDE macros for the GoldMine License

... 87, 235

mail message
deleting a message 303
deleting online e-mail messages 312
filing a message in History 303
preparing an Name/Value container to

forward a mail message 305
preparing the NV container for a new

mail message 304
queuing a message for delivery 301
reading.. 297
retrieving a list of messages waiting

online .. 310
retrieving online messages................. 311
saving a mail message into GoldMine

... 302
updating ... 302

MAILBOX.DBF
SQL.. 403
Xbase ... 388

merge fields added to a form................. 106
merge form

adding... 69, 216
DDE macrosSee Dynamic Data

Exchange, See Dynamic Data
Exchange

merging data into a document 29
message dialog box display 67–69
message,displaying in GoldMine’s status

bar.. 76, 220
Move function 37, 185
MS Word for Windows, Linking

GoldMine to ... 30
MsgBox function................................ 67, 215
multi-threaded applications

special considerations........................... 98
multi-value NV pairs 108

appending string values to 112
deleting values from 110
retrieving values.................................. 110

Name/Value container
assigning a container to a parent 110
copying values between containers.. 100
creating ... 99
creating an empty child container

within the parent............................. 111
creating with copied values 100
deleting a container............................. 101

Integrating With GoldMine

436

determining container position in NV
hierarchy.. 107

preparing an NV container to forward a
mail message 305

preparing the container for a new mail
message.. 304

reading values from a container 101
retrieving containers from an NV pair

... 109
storing NV pairs in a container......... 102

Name/Value Functions............................ 99
E-mail ... 297

Name/Value pair
determining the type of an NV pair. 106
finding an NV name........................... 104
finding an NV value 105
getting the number of values in a multi-

value pair ... 108
removing all NV pairs from a container

... 103
removing one NV pair 103
retrieving containers from................. 109
retrieving values in a multi-value pair

... 110
searching for an NV pair 102
setting NV pairs 105
totaling NV pairs in a container 104
working with multi-value NV pairs 106

NewForm function............................ 69, 216
NewGroup function.................................. 71
NewMember function 72
NonCurtainedFields function 295
Notes, updating notes of a primary

contact record...................................... 266
OnlineList function 310
Open function.................................... 40, 186
operators... 365
OPMGR.DBF

SQL ... 404
Xbase... 389

pager message
creating and sending 75, 219

PERPHONE.DBF
SQL ... 405
Xbase... 390

PlayMacro function........................... 73, 218
PrepareNewMail function 304

QueueMail function................................ 301
QuickRead.. 134, 168
QuickReplace................................... 134, 169
QuickSeek... 133, 168
Range function................................... 41, 187
Read function..................................... 42, 188
ReadContact function............................. 284
ReadMail function................................... 297
ReadRecord function 283
RecNo function.................................. 42, 189
record

checking the current record number or
record ID.................................. 126, 158

creating a subset of records 127, 160
deleting the current record.......... 35, 183
getting a new record........................... 173
moving to a specified record...... 37, 131,

164, 184
moving to the first match 129, 162
moving to the first record.......... 131, 166
moving to the last record........... 132, 167
moving to the previous or following

record 132, 166
positioning the pointer to a specified

record 130, 163
reading a .. 283
unlocking ... 46
unlocking a record...................... 127, 159

RecordObj
subfunctions 47, 193

RecordObj function........................... 46, 192
referral, creating or updating 270
remote license

generating a remote license file 296
removing.. 297

RemoveRemoteLicense function........... 297
Replace function................................ 43, 190
RESITEMS.DBF

SQL ... 406
Xbase... 390

RetrieveMessages function 311
SaveMail function 302
SaveManualRcptList function 313
search

limiting the search scope 128, 161
performing a sequential search. 128, 161

SEARCH function 44, 191

Integrating With GoldMine

 437

Security
handling GoldMine Security293
reading security and rights for a DLL

user.. 113, 223
retrieving field-level access rights295
retrieving security access294
validating a Web user name and

password..318
seek

moving to the first record match......129,
162

seeking a record........................... 133, 168
SendPage function............................. 75, 219
service item... 77, 225
service name...30
service topics 30, 59, 208
SetContactAlert function286
SetEmailPrefs function............................313
SetSessionHandling function.................263
SPFILES.DBF

SQL..406
Xbase ...391

SQL
determining whether a table is SQL or

Xbase... 124, 156
executing a query279
setting the database login name and

password..91
table, checking for 37, 184

SQL database structures 391–407
SQLStream function279
status bar

message display.....................................76
StatusMsg function....................................76
Summary tab 83, 232
support and resources

developers FTP site24
GoldMine KnowledgeBase24

sync log
updating sync logs with GM5S32.DLL

... 135, 171
updating the Sync Log file . 135, 171, 221

sync stamp
converting to time format 138, 173

synchronization functions 135, 171
SyncStamp function 76, 220
System Agent 75, 219

table
checking for an Xbase or SQL table type

... 37, 184
moving to the last record 132, 167

TemplateList function............................. 308
templates, accessing e-mail templates .. 308
third-party developers.................... 377, 393
timestamps

converting TLog 76, 220
TLog import file

importing a prepared TLog import file
... 136, 172, 222

TLog timestamps
converting to date and time stamps ... 77

UNLOCK function 191
UpdateEmailAddress function.............. 265
UpdateMail function............................... 302
UpdateWebSite function 266
user

creating a new GoldMine login......... 293
generating a remote license file......... 296
logging in multiple users through the

API .. 97
reading security and rights for a DLL

User... 113, 223
removing a remote license 297
retrieving field-level access rights 295
retrieving security access 294
returning a user list 287
returning group memberships for a

specified user................................... 288
validating a Web user name and

password.. 318
user group

returning a user group member list . 287
returning group memberships for a

specified User 288
saving a user group............................. 288

VBA ... 31, 32
visible fields, retrieving 295
Visual Basic examples for GM5S32.DLL

... 416–23
Visual Basic for Applications................... 31
Web

validating a Web user name and
password.. 318

Integrating With GoldMine

438

Web import instruction file, processing 59,
208

Web site record,updating....................... 266
Work Area

accessing low-level data using work
areas.. 121, 153

in DDE functions................................... 31
WriteContact function 264
WriteContactNotes function.................. 266
WriteDetail function 268
WriteGMUser function........................... 293
WriteGroupUsersList function.............. 288
WriteHistory function 275
WriteLinkedDoc function 269
WriteOtherContact function..267, 276, 277,

278
WriteReferral function............................ 270
WriteSchedule function.......................... 271
Xbase

conditionals, operators, and logical
evaluators .. 364

creating an Xbase file with registered
fields ... 62, 210

date functions.............................. 368, 372
determining whether a table is SQL or

Xbase .. 124, 156
evaluating an Xbase expression on a

contact record.................................. 289
expression, reading without opening a

file ... 59, 208
function/parameter types 364
functions... 368
miscellaneous functions............. 368, 376
numeric functions....................... 368, 374
string functions 368
table, checking for......................... 37, 184

Xbase database structures.................377–91
Xbase expressions363–76
XbaseContactExpr function 289

}

	
	About this Manual
	Style Conventions used in this Manual
	Print Conventions
	General Conventions
	Mouse Conventions

	Methods of Integrating with GoldMine
	Integrating via Dynamic Data Exchange
	Integrating via GMXS32.DLL
	Integrating via the GoldMine XML API (GMXMLAPI.DLL)
	Interacting with GoldMine via the GoldMine COM Server
	Integrating via GoldMine Plug-ins
	Integrating via a Database Engine
	Comparing Integration Methods
	Resources and Support
	Open Developer Community
	Technology Partner Program
	Integration Tools

	
	Using DDE in GoldMine
	Merging Data into a Document
	Updating Database Information
	Querying for Data
	Identifying Telephone Numbers Automatically
	Linking Contact Records to an Accounting Application
	Inserting Incoming E-mail
	Linking GoldMine to MS Word for Windows
	Entering Application, Topic, and Item Names
	Establishing a DDE Conversation

	Working with DDE Functions
	Accessing Data Files
	Adding an Empty Record
	Parameters
	Return Value
	Closing an Opened File
	Deleting the Current Record
	Creating a Subset of Records
	Checking for an Xbase or SQL Table
	Moving to a Specified Record
	Opening a Data File
	Limiting GoldMine Search Range
	Reading a Field Value
	Checking the Current Record Number or Record ID
	Changing a Field Value
	Performing a Sequential Search
	Unlocking a Record

	Accessing Contact Records
	Linking GoldMine Fields with an External Application

	Accessing Specialized DDE Functions
	Retrieving Login Credentials for Use with the GMXS32.DLL
	Retrieving the RecID of the Current Opportunity
	Completing a Calendar Activity
	Displaying the Contact Record of an Incoming Caller
	Running a Counter
	Returning GoldMine Record Data
	Processing a Web Import Instruction File
	Reading an Xbase Expression Without Opening a File
	Adding Merge Fields to a Form
	Deleting Fields from a Form
	Closing a Form Profile
	Creating an Xbase File with Registered Fields
	Returning a Field Name for an Expression
	Returning a Value for Unattached Fields
	Counting the Number of Exported Records
	Creating a History Record
	Creating or Updating a Document Link
	Displaying a Message Dialog Box
	Adding a Merge Form
	Creating a Group
	Adding a Group Member
	Creating a Macro
	Creating and Sending a Pager Message
	Displaying a Message in the GoldMine Status Bar
	Converting TLog Timestamps

	DDE Macros
	DDE Macros for Merge Forms
	 DDE Macros for the GoldMine License

	Passing Multiple Parameters to a Function
	Comparing Low Level/DDE Methodology to Business Logic Methodology

	Loading GMXS32.DLL and Logging In
	Setting the SQL Database Login Name and Password (GoldMine 6.7 or lower only)
	Loading an API Session (GoldMine 7.0 or higher)
	Loading a BDE Session (GoldMine 6.7 or lower)
	Logging in a User
	Closing an API Session (GoldMine 7.0 or higher)
	Closing a BDE Session (GoldMine 6.7 or lower)

	Logging in Multiple Users through the API
	Logging In
	Logging Out
	Switching Between Login Sessions
	Special Consideration for Multi-Threaded Applications

	Working with Business Logic Functions using the Name/Value Pair Method
	Creating an NV Container
	Creating an NV Container with Copied Values
	Copying Values between NV Containers
	Deleting an NV Container
	Reading Values from an NV Container
	Storing NV Pairs in a Container
	Searching for an NV Pair
	Removing one NV Pair
	Removing all NV Pairs from a Container
	Totaling NV Pairs in a Container
	Finding an NV Name
	Finding an NV Value
	Setting NV Pairs
	Executing Business Logic Methods

	Working with Multi-Value Name/Value Pairs
	Determining the Type of a Name/Value Pair
	Determining the Position of an NV Container in an NV Hierarchy
	Getting the Number of Values in a Multi-Value Pair
	Retrieving Containers from an NV Pair
	 Retrieving the Values in a Multi-Value Pair
	Deleting Values from a Multi-Value Pair
	Assigning a Container to a Parent
	Creating an Empty Child Container Within the Parent
	Appending String Values to a Multi-Value Pair

	Low-level Data Access & Manipulation
	Reading Security and Rights for a DLL User
	Returning GoldMine Licensing Information
	Returning Calendar Data
	Retrieving Data with DataStream
	Advantages of Using DataStream
	DataStream Record Selection
	GMW_DS_Range
	GMW_DS_Query
	GMW_DS_Fetch
	GMW_DS_Close

	Accessing Low-Level Data Using Work Areas
	Opening a Data File
	Closing a Data File
	Checking for an SQL Table
	Adding a Record
	Deleting the Current Record
	Querying for a Field Value
	Checking the Current Record Number or Record ID
	Unlocking a Record
	Creating a Subset of Records
	Limiting Search Scope
	Performing a Sequential Search
	Moving to the First Record Match
	Setting the Current Index Tag
	Positioning the Record Pointer
	Moving to a Specified Record
	Moving to the First Record
	Moving to the Previous or Following Record
	Moving to the Last Record
	Seeking a Record
	Reading a Field Value
	Replacing a Field Value

	Updating Sync Logs with GMXS32.DLL
	Updating the Sync Log File
	Importing a Prepared TLog Import File
	Getting a New Record ID
	Converting the Sync Stamp

	Executing Your XML Document
	Creating Your XML Document
	Loading the API (GoldMine 7.0 or higher)
	Loading BDE (GoldMine 6.7)
	Logging in Subsequent Users
	Logging Out
	Unloading the API (GoldMine 7.0 or higher)
	Unloading BDE (GoldMine 6.7)
	Accessing Data with Business Logic Functions
	Accessing Nested Nodes of Data
	Business Logic Function Return Values

	Accessing Low-level Data Manipulation Functionality
	Retrieving Data with DataStream
	Advantages of Using DataStream
	DataStream Record Selection
	DS_Range
	DS_Query
	DS_Fetch
	DS_Close

	Accessing Low-Level Data Using Work Areas
	Opening a Data File
	Closing a Data File
	Checking for an SQL Table
	Adding a Record
	Deleting the Current Record
	Reading a Field Value
	Checking the Current Record Number or Record ID
	Changing a Field Value
	Unlocking a Record
	Creating a Subset of Records
	Limiting Search Scope
	Performing a Sequential Search
	Moving to the First Record Match
	Setting the Current Index Tag
	Positioning the Record Pointer
	Moving to a Specified Record
	Moving to the First Record
	Moving to the Previous or Following Record
	Moving to the Last Record
	Seeking a Record
	Reading a Field Value
	Replacing a Field Value
	Returning Calendar Data

	Updating Sync Logs
	Updating the Sync Log File
	Importing a Prepared TLog Import File
	Getting a New Record ID
	Converting the Sync Stamp

	Using MSXML to Handle GoldMine API XML
	Getting Started
	Defining the Root Element
	Setting Attributes
	Referencing an Attribute

	Creating Child Elements
	Executing the XML Document
	Reading the Results
	Reading the Code Attribute
	Reading the Returned Data

	Getting Started
	Executing Commands
	Logging In to GoldMine

	GoldMine.UI Class
	Accessing Data Files
	Adding an Empty Record
	Parameters
	Return Value
	Closing an Opened File
	Deleting the Current Record
	Creating a Subset of Records
	Checking for an Xbase or SQL Table
	Moving to a Specified Record
	Opening a Data File
	Limiting GoldMine Search Range
	Reading a Field Value
	Checking the Current Record Number or Record ID
	Changing a Field Value
	Performing a Sequential Search
	Unlocking a Record

	Accessing Contact Records
	Linking GoldMine Fields with an External Application

	Accessing Specialized GoldMine.UI Functions
	Retrieving a List of Active Plug-Ins (GoldMine 7.0 or higher)
	Running a Plug-In (GoldMine 7.0 or higher)
	Retrieving Login Credentials for Use with the GMXS32.DLL
	Retrieving the RecID of the Current Opportunity
	Completing a Calendar Activity
	Displaying Edit Windows for Calendar and History Items
	Displaying the Contact Record of an Incoming Caller
	Running a Counter
	Returning GoldMine Record Data
	Processing a Web Import Instruction File
	Reading an Xbase Expression Without Opening a File
	Adding Merge Fields to a Form
	Deleting Fields from a Form
	Closing a Form Profile
	Creating an Xbase File with Registered Fields
	Returning a Field Name for an Expression
	Returning a Value for Unattached Fields
	Counting the Number of Exported Records
	FormPrintedDoc
	Creating a History Record
	Creating or Updating a Document Link
	Displaying a Message Dialog Box
	Adding a Merge Form
	Playing a Toolbar Macro
	Creating and Sending a Pager Message
	Displaying a Message in the GoldMine Status Bar
	Converting TLog Timestamps
	Updating the Sync Log File
	Importing a Prepared TLog Import File
	Forcing Logout
	Reading Security and Rights
	RETRIEVING USER PERMISSIONS
	RETRIEVING CALENDAR PERMISSIONS
	RETRIEVING HISTORY ACCESS

	Macros
	Executing Macros
	Available Data-Related Macros
	Macros for Merge Forms
	Macros for the GoldMine License

	Controlling the GoldMine User Interface
	Getting Window Information
	GETAVAILABLEWINDOWSLIST
	GETACTIVEWINDOWSLIST

	Registering for Events
	REGISTERVETOWINDOWLAUNCH
	REGISTERWINDOWUPDOWN
	REGISTERCOMMANDEXEC
	REGISTERTABDETAILSEVENTS
	ADDITIONALCONTACTCLICK
	DETAILSCLICK
	PENDINGCLICK
	HISTORYCLICK
	LINKEDDOCCLICK

	Handling GoldMine.UI Events
	NOTIFYCONTROLCOMMAND
	VETOWINDOW
	WINDOWUPDOWN
	GMEVENT

	Manipulating Controls Programatically
	PRESSBUTTON
	SETCONTROLTEXT
	 SETCHECKBOX
	SELECTRADIO
	SETLISTBOX/SETCOMBOBOX
	SELECTTAB
	ENABLECTRL

	Executing a Menu Command
	Opening a Mail Record
	Setting a Selected Record in a GoldMine Grid (GoldMine 8.0 or higher)
	Returning Selected Records in a GoldMine Grid (8.0.1 or higher)

	GoldMine.RecObj Class
	RECORDOBJECTHASCHANGED
	RECORDFIELDHASUPDATED
	RECORDTABHASCHANGED

	GoldMine.GMSystemEvents Class
	GOLDMINESHUTDOWN

	Business Logic Functions and Name/Value Pairs
	Controlling Database Session Handling
	Creating or Updating a Contact Record
	Updating an E-mail Address
	Updating a Web Site Record
	Updating Notes of a Primary Contact Record
	Creating or Updating an Additional Contact Record
	Creating or Updating a Detail Record
	Creating or Updating a Linked Document
	Creating or Updating a Referral
	Creating or Updating Activities
	Creating or Updating a History Record
	Creating or Updating a Case Record (GoldMine 8.0 or higher)
	Creating or Updating a Case Attachment (GoldMine 8.0 or higher)
	Adding a GoldMine User as a Case Team Member (GoldMine 8.0 or higher)
	Attaching an Automated Process
	Executing an SQL Query
	Creating a Contact Group
	Adding Contacts to a Contact Group
	Using AddContactGrpMembers
	Reading a Record
	Reading a Contact1 or Contact2 Record
	Returning Alerts Attached to a Contact Record
	Attaching an Alert
	Returning All Alerts
	Returning a User List
	Returning a User Group Member List
	Returning Group Memberships for a Specified User
	Saving a User Group
	Retrieving the Names of User Groups
	Evaluating an Xbase Expression on a Contact Record
	Encrypting Text
	Decrypting Encoded Text
	Retrieving the Default Contact Automated Process
	 Deleting Calendar Items
	Deleting History Items

	Handling GoldMine Security
	Creating a New GoldMine Login
	Reading a GoldMine Login
	Retrieving Security Access
	Retrieving Field-Level Access Rights
	Retrieving Visible Fields
	Checking for Record Curtaining
	Generating a Remote License File
	Removing a Remote License

	E-mail Name/Value Functions
	Reading a Mail Message
	Queuing a Message for Delivery
	Updating a Mail Message
	Saving a Mail Message into GoldMine
	Deleting a Message
	Filing a Message in History
	Preparing the NV Container for a New Mail Message
	Preparing the NV Container to Reply to a Mail Message
	Preparing an NV Container to Forward a Mail Message
	Adding an E-mail Center Folder
	 Deleting an E-Mail Center Folder
	Obtaining a List of E-Mail Center Folders
	FromList
	Accessing E-mail Templates
	Retrieving E-mail Account Information
	Retrieving a List of Messages Waiting Online
	Retrieving Messages
	Deleting Online E-mail Messages
	Return Name/Value Pairs
	Saving a Manual List of Recipients
	Retrieving a Manual List of Recipients
	Managing Internet E-mail Preferences
	 Validating a Web User Name and Password

	Manipulating User-Defined Fields and Views
	Reading All Field Views
	Deleting a Contact View
	Creating or Modifying a Contact View
	Reading Custom Fields
	Modifying the Structure of Custom Fields
	Reading Calendar Preferences
	Modifying Calendar Preferences
	Reading Personal Preferences
	Updating Personal Preferences
	Reading Record Preferences
	Updating Record Preferences
	Reading Schedule Preferences
	Updating Schedule Preferences
	Reading Alarm Preferences
	Updating Alarm Preferences
	Reading Lookup Preferences
	Updating Alarm Preferences
	Reading Pager Preferences
	Updating Pager Preferences
	Reading Miscellaneous Preferences
	Updating Miscellaneous Preferences
	Reading the Database Engine Type (7.0 or higher)
	Reading a List of GoldMine User Groups
	Creating or Updating GoldMine User Groups
	Adding a GoldMine User to a Group
	Removing a GoldMine User from a Group
	Creating or Updating an Opportunity or Project

	Using ActiveX Plug-in Support
	Using HTML Plug-in Support
	Plug-In Description File
	HTML Plug-in Description File
	ActiveX Plug-in Description File

	Security and Plug-in Directories
	Security
	Adding a Local Plug-in Directory

	Sample Plug-ins
	gmail.gme
	External.gme
	gmplus.asp

	Function/Parameter Types
	Conditionals, Operators, and Logical Evaluators
	Conditionals
	Operators
	Logical Evaluators

	Xbase Functions
	String Functions
	 Date Functions
	Numeric Functions
	 Miscellaneous Functions
	CAL.DBF
	CONTACT1.DBF
	CONTACT2.DBF
	CONTGRPS.DBF
	CONTHIST.DBF
	CONTSUPP.DBF
	INFOMINE.DBF
	LOOKUP.DBF
	 MAILBOX.DBF
	OPMGR.DBF
	PERPHONE.DBF
	RESITEMS.DBF
	SPFILES.DBF
	CAL Table
	CONTACT1 Table
	CONTACT2 Table
	CONTGRPS Table
	CONTHIST Table
	CONTSUPP Table
	INFOMINE Table
	LOOKUP Table
	MAILBOX Table
	OPMGR Table
	PERPHONE Table
	RESITEMS Table
	SPFILES Table

	GMXS32.DLL Code Examples
	C++ Examples
	Function prototypes
	 Logging In
	Creating a Contact with Business Logic/ Enumerating a Name Value Container/DataStream
	Low-Level Work Area

	Visual Basic Examples
	Function prototypes
	 Logging In
	Creating a Contact
	Enumerating a Container
	DataStream
	Low-Level WorkArea

	Delphi Examples
	Function prototypes
	Creating a Contact
	Enumerating a Container
	 DataStream
	Low-Level Work Area

	General Index

